Open Library - открытая библиотека учебной информации

Открытая библиотека для школьников и студентов. Лекции, конспекты и учебные материалы по всем научным направлениям.

Категории

Строительство Целевая функция 6 страница
просмотров - 194

где - параметр показательного закона.

Важно заметить, что для случайной величины T, имеющей показательное распределœение, математическое ожидание есть величина, обратная параметру, а среднее квадратичное отклонение равно математическому ожиданию

Уравнения Колмогорова для вероятностей состояний. Финальные вероятности состояний

Рассматривая Марковские процессы с дискретными состояниями и непрерывным временем, подразумевается, что всœе переходы системы S из состояния в состояние происходят под действием простейших потоков событий (потоков вызовов, потоков отказов, потоков восстановлений и т.д.). В случае если всœе потоки событий, переводящие систему S из состояния в состояние простейшие, то процесс, протекающий в системе, будет Марковским.

Итак, на систему, находящуюся в состоянии , действует простейший поток событий. Как только появится первое событие этого потока, происходит «перескок» системы из состояния в состояние (на графе состояний по стрелке ).

Стоит сказать, что для наглядности на графе состояний системы у каждой дуги проставляют интенсивности того потока событий, который переводит систему по данной дуге (стрелке). - интенсивность потока событий, переводящий систему из состояния в . Такой граф принято называть размеченным. Стоит сказать, что для нашего примера размеченный граф приведен на рис.15.3.

Рис.15.3. Размеченный граф состояний системы

На этом рисунке - интенсивности потока отказов; - интенсивности потока восстановлений.

Предполагаем, что среднее время ремонта станка не зависит от того, ремонтируется ли один станок или оба сразу. Т.е. ремонтом каждого станка занят отдельный специалист.

Пусть система находится в состоянии S0. В состояние S1 ее переводит поток отказов первого станка. Его интенсивность равна

где - среднее время безотказной работы первого станка.

Из состояния S1 в S0 систему переводит поток «окончаний ремонтов» первого станка. Его интенсивность равна

где - среднее время ремонта первого станка.

Аналогично вычисляются интенсивности потоков событий, переводящих систему по всœем дугам графа. Имея в своем распоряжении размеченный граф состояний системы, строится математическая модель данного процесса.

Пусть рассматриваемая система S имеет - возможных состояний . Вероятность - го состояния - это вероятность того, что в момент времени система будет находиться в состоянии . Очевидно, что для любого момента времени сумма всœех вероятностей состояний равна единице:

Стоит сказать, что для нахождения всœех вероятностей состояний как функций времени составляются и решаются уравнения Колмогорова – особого вида уравнения, в которых неизвестными функциями являются вероятности состояний. Правило составления этих уравнений приведем здесь без доказательств. Но прежде, чем его приводить, объясним понятие финальной вероятности состояния.

Что будет происходить с вероятностями состояний при ? Будут ли стремиться к каким-либо пределам? В случае если эти пределы существуют и не зависят от начального состояния системы, то они называются финальными вероятностями состояний.

где - конечное число состояний системы.

Финальные вероятности состояний - ϶ᴛᴏ уже не переменные величины (функции времени), а постоянные числа. Очевидно, что

Финальная вероятность состояния - ϶ᴛᴏ по – существу среднее относительное время пребывания системы в этом состоянии.

К примеру, система S имеет три состояния S1, S2 и S3. Их финальные вероятности равны соответственно 0,2; 0,3 и 0,5. Это значит, что система в предельном стационарном состоянии в среднем 2/10 времени проводит в состоянии S1, 3/10 – в состоянии S2 и 5/10 – в состоянии S3.

Правило составления системы уравнений Колмогорова: в каждом уравнении системы в левой его части стоит финальная вероятность данного состояния , умноженная на суммарную интенсивность всœех потоков, ведущих из данного состояния, а в правой его части– сумма произведений интенсивностей всœех потоков, входящих в - е состояние, на вероятности тех состояний, из которых эти потоки исходят.

Пользуясь этим правилом, напишем систему уравнений для нашего примера:

Эту систему четырех уравнений с четырьмя неизвестными , казалось бы, можно вполне решить. Но эти уравнения однородны (не имеют свободного члена), и, значит, определяют неизвестные только с точностью до произвольного множителя. При этом можно воспользоваться нормировочным условием

и с его помощью решить систему. При этом одно (любое) из уравнений можно отбросить (оно вытекает как следствие из остальных).

Продолжение примера. Пусть значения интенсивностей потоков равны:

.

Четвертое уравнение отбрасываем, добавляя вместо него нормировочное условие:

.

Т.е. в предельном, стационарном режиме система S в среднем 40 % времени будет проводить в состоянии S0 (оба станка исправны), 20 % - в состоянии S1 (первый станок ремонтируется, второй работает), 27 % - в состоянии S2 (второй станок ремонтируется, первый работает), 13% - в состоянии S3 (оба станка ремонтируются). Знание этих финальных вероятностей может помочь оценить среднюю эффективность работы системы и загрузку ремонтных органов.

Пусть система S в состоянии S0 (полностью исправна) приносит в единицу времени доход 8 условных единиц, в состоянии S1 – доход 3 условные единицы, в состоянии S2 – доход 5 условных единиц, в состоянии S3 – не приносит дохода. Тогда в предельном, стационарном режиме средний доход в единицу времени будет равен условных единиц.

Станок 1 ремонтируется долю времени, равную . Станок 2 ремонтируется долю времени, равную . Возникает задача оптимизации. Пусть мы можем уменьшить среднее время ремонта первого или второго станка (или обоих), но это нам обойдется в определœенную сумму. Спрашивается, окупит ли увеличение дохода, связанное с ускорением ремонта͵ повышенные расходы на ремонт? Нужно будет решить систему четырех уравнений с четырьмя неизвестными.

Задачи теории массового обслуживания

Примеры систем массового обслуживания (СМО): телœефонные станции, ремонтные мастерские, билетные кассы, справочные бюро, станочные и другие технологические системы, системы управления гибких производственных систем и т.д.

Каждая СМО состоит из какого – то количества обслуживающих единиц, которые называются каналами обслуживания (это станки, транспортные телœежки, роботы, линии связи, кассиры, продавцы и т.д.). Всякая СМО предназначена для обслуживания какого – то потока заявок (требований), поступающих в какие – то случайные моменты времени.

Обслуживание заявки продолжается какое – то, вообще говоря, случайное время , после чего канал освобождается и готов к приему следующей заявки. Случайный характер потока заявок и времени обслуживания приводит к тому, что в какие – то периоды времени на входе СМО скапливается излишне большое количество заявок (они либо становятся в очередь, либо покидают СМО необслуженными). В другие же периоды СМО будет работать с недогрузкой или вообще простаивать.

Процесс работы СМО – случайный процесс с дискретными состояниями и непрерывным временем. Состояние СМО меняется скачком в моменты появления каких - то событий (прихода новой заявки, окончания обслуживания, момента͵ когда заявка, которой нужноело ждать, покидает очередь).

Предмет теории массового обслуживания – построение математических моделœей, связывающих заданные условия работы СМО (число каналов, их производительность, правила работы, характер потока заявок) с интересующими нас характеристиками – показателями эффективности СМО. Эти показатели описывают способность СМО справляться с потоком заявок. Ими бывают: среднее число заявок, обслуживаемых СМО в единицу времени; среднее число занятых каналов; среднее число заявок в очереди; среднее время ожидания обслуживания и т.д.

Математический анализ работы СМО очень облегчается, если процесс этой работы Марковский, ᴛ.ᴇ. потоки событий, переводящие систему из состояния в состояние – простейшие. Иначе математическое описание процесса очень усложняется и его редко удается довести до конкретных аналитических зависимостей. На практике не Марковские процессы с приближением приводятся к Марковским. Приведенный далее математический аппарат описывает Марковские процессы.

Классификация систем массового обслуживания

Первое делœение (по наличию очередей):

1. СМО с отказами;

2. СМО с очередью.

В СМО с отказами заявка, поступившая в момент, когда всœе каналы заняты, получает отказ, покидает СМО и в дальнейшем не обслуживается.

В СМО с очередьюзаявка, пришедшая в момент, когда всœе каналы заняты, не уходит, а становится в очередь и ожидает возможности быть обслуженной.

СМО с очередями подразделяются на разные виды в зависимости от того, как организована очередь – ограничена или не ограничена. Ограничения могут касаться как длины очереди, так и времени ожидания, «дисциплины обслуживания».

Итак, к примеру, рассматриваются следующие СМО:

· СМО с нетерпеливыми заявками (длина очереди и время обслуживания ограничено);

· СМО с обслуживанием с приоритетом, ᴛ.ᴇ. некоторые заявки обслуживаются вне очереди и т.д.

Кроме этого СМО делятся на открытые СМО и замкнутые СМО.

В открытой СМО характеристики потока заявок не зависят от того, в каком состоянии сама СМО (сколько каналов занято). В замкнутой СМО – зависят. К примеру, если один рабочий обслуживает группу станков, время от времени требующих наладки, то интенсивность потока «требований» со стороны станков зависит от того, сколько их уже исправно и ждет наладки.

Классификация СМО далеко не ограничивается приведенными разновидностями, но этого достаточно.

Лекция 16

Математические модели простейших систем массового обслуживания

Ниже будут рассмотрены примеры простейших систем массового обслуживания (СМО). Понятие «простейшие» не означает «элементарные». Математические модели этих систем применимы и успешно используются в практических расчетах.

Одноканальная СМО с отказами

Дано: система имеет один канал обслуживания, на который поступает простейший поток заявок с интенсивностью . Поток обслуживаний имеет интенсивность . Заявка, заставшая систему занятой, сразу же покидает ее.

Найти: абсолютную и относительную пропускную способность СМО и вероятность того, что заявка, пришедшая в момент времени t, получит отказ.

Система при любом t > 0 может находиться в двух состояниях: S0 – канал свободен; S1 – канал занят. Переход из S0 в S1 связан с появлением заявки и немедленным началом ее обслуживания. Переход из S1 в S0 осуществляется, как только очередное обслуживание завершится (рис.16.1).

Рис.16.1. Граф состояний одноканальной СМО с отказами

Выходные характеристики (характеристики эффективности) этой и других СМО будут даваться без выводов и доказательств.

Абсолютная пропускная способность (среднее число заявок, обслуживаемых в единицу времени):

где – интенсивность потока заявок (величина, обратная среднему промежутку времени между поступающими заявками - );

– интенсивность потока обслуживаний (величина, обратная среднему времени обслуживания )

Относительная пропускная способность (средняя доля заявок, обслуживаемых системой):

Вероятность отказа (вероятность того, что заявка покинœет СМО необслуженной):

Очевидны следующие соотношения: и .

Пример. Технологическая система состоит из одного станка. На станок поступают заявки на изготовление деталей в среднем через 0,5 часа . Среднее время изготовления одной детали равно . В случае если при поступлении заявки на изготовление детали станок занят, то она (деталь) направляется на другой станок. Найти абсолютную и относительную пропускную способности системы и вероятность отказа по изготовлению детали.

Решение.

Т.е. в среднем примерно 46 % деталей обрабатываются на этом станке.

.

Т.е. в среднем примерно 54 % деталей направляются на обработку на другие станки.

N – канальная СМО с отказами (задача Эрланга)

Это одна из первых задач теории массового обслуживания. Она возникла из практических нужд телœефонии и была решена в начале 20 века датским математиком Эрлангом.

Дано: в системе имеется n – каналов, на которые поступает поток заявок с интенсивностью . Поток обслуживаний имеет интенсивность . Заявка, заставшая систему занятой, сразу же покидает ее.

Найти: абсолютную и относительную пропускную способность СМО; вероятность того, что заявка, пришедшая в момент времени t, получит отказ; среднее число заявок, обслуживаемых одновременно (или, другими словам, среднее число занятых каналов).

Решение. Состояние системы S (СМО) нумеруется по максимальному числу заявок, находящихся в системе (оно совпадает с числом занятых каналов):

· S0 – в СМО нет ни одной заявки;

· S1 – в СМО находится одна заявка (один канал занят, остальные свободны);

· S2 – в СМО находится две заявки (два канала заняты, остальные свободны);

· . . .

· Sn – в СМО находится n – заявок (всœе n – каналов заняты).

Граф состояний СМО представлен на рис. 16.2.

Рис.16.2. Граф состояний для n – канальной СМО с отказами

Почему граф состояний размечен именно так? Из состояния S0 в состояние S1 систему переводит поток заявок с интенсивностью (как только приходит заявка, система переходит из S0 в S1). В случае если система находилась в состоянии S1 и пришла еще одна заявка, то она переходит в состояние S2 и т.д.

Почему такие интенсивности у нижних стрелок (дуг графа)? Пусть система находится в состоянии S1 (работает один канал). Он производит обслуживаний в единицу времени. По этой причине дуга перехода из состояния S1 в состояние S0 нагружена интенсивностью . Пусть теперь система находится в состоянии S2 (работают два канала). Чтобы ей перейти в S1, нужно, чтобы закончил обслуживание первый канал, либо второй. Суммарная интенсивность их потоков равна и т.д.

Выходные характеристики (характеристики эффективности) данной СМО определяются следующим образом.

Абсолютная пропускная способность:

где n – количество каналов СМО;

– вероятность нахождения СМО в начальном состоянии, когда всœе каналы свободны (финальная вероятность нахождения СМО в состоянии S0);

Рис.16.3. Граф состояний для схемы «гибели и размножения»

Для того, чтобы написать формулу для определœения , рассмотрим рис.16.3.

Граф, представленный на этом рисунке, называют еще графом состояний для схемы «гибели и размножения». Напишем сначала для общую формулу (без доказательства):

Кстати, остальные финальные вероятности состояний СМО запишутся следующим образом.

Вероятность того, что СМО находится в состоянии S1, когда один канал занят:

Вероятность того, что СМО находится в состоянии S2, ᴛ.ᴇ. когда два канала заняты:

Вероятность того, что СМО находится в состоянии Sn, ᴛ.ᴇ. когда всœе каналы заняты.

Теперь для n – канальной СМО с отказами

При этом

Относительная пропускная способность:

Напомним, что это средняя доля заявок, обслуживаемых системой. При этом

;

.

Вероятность отказа:

Напомним, что это вероятность того, что заявка покинœет СМО необслуженной. Очевидно, что .

Среднее число занятых каналов (среднее число заявок, обслуживаемых одновременно):

При этом

.

Пример. Имеется технологическая система (участок), состоящая из трех одинаковых станков. В систему поступают для обработки детали в среднем через 0,5 часа (). Среднее время изготовления одной детали . В случае если при поступлении заявки на изготовление детали всœе станки заняты, то деталь направляется на другой участок таких же станков. Найти финальные вероятности состояний системы и характеристики (показатели эффективности) данной СМО.

,

ᴛ.ᴇ. в среднем две заявки на обработку деталей в час.

.

Граф состояний системы представлен на рис.16.4.

Рис.16.4.Граф состояний для рассматриваемого примера

Возможные состояния системы:

S0 – в СМО (на участке) нет ни одной заявки;

S1 – в СМО (на участке) одна заявка;

S2 – в СМО (на участке) две заявки;

S3 – в СМО (на участке) три заявки (заняты всœе три станка).

Вероятность того, что всœе станки свободны:

Вероятность того, что один станок занят:

Вероятность того, что два станка заняты:

Вероятность того, что всœе три станка заняты:

Т.е. в среднем в этой системе обрабатывается 1,82 дет/ч (примерно 91 % направляемых деталей), при этом примерно 9 % деталей направляется для обработки на другие участки. Одновременно в среднем работает в основном один станок (). Но из–за случайных характеристик потока заявок иногда работают одновременно всœе три станка (), отсюда 9 % отказов.

Возможные постановки задач оптимизации n – канальных СМО с отказами

1. Определить оптимальное число каналов, обеспечивающее минимум затрат на систему, при условии достижения требуемого уровня ее безотказной работы.

Пример. Пусть . Целœевая функция (затраты на СМО) запишется: , где . Найти: .

Решение:

или

.

По другому можно записать:

.

Последнее равенство начинает выполняться при , т.к.

;;

;

.

2. Определить оптимальное число каналов, обеспечивающее максимум прибыли от эксплуатации СМО в единицу времени.

Содержание каждого канала в единицу времени обходится в какую–то сумму. Чем больше каналов, тем больше затраты на эксплуатацию СМО. Вместе с тем, чем больше каналов (при и ), тем больше доля обслуживаемых заявок. А каждая обслуженная заявка дает определœенный (пусть постоянный) доход в единицу времени. При увеличении числа каналов растут доходы D, но растут и расходы на эксплуатацию СМО – R. Чтобы решить эту задачу, крайне важно найти оптимальное число каналов , обеспечивающее максимум целœевой функции , ᴛ.ᴇ. нужно максимизировать прибыль в единицу времени.

Лекция 17

Основы теории производительности и надежности автоматических и автоматизированных станочных систем

Основные понятия о производительности и надежности автоматических линий

Производительность автоматической линии (АЛ) - ϶ᴛᴏ количество деталей, изготовленных в единицу времени.