Open Library - открытая библиотека учебной информации

Открытая библиотека для школьников и студентов. Лекции, конспекты и учебные материалы по всем научным направлениям.

Категории

Науковедение ИССЛЕДОВАНИЕ ФУНКЦИИ ПО ОБЩЕЙ СХЕМЕ
просмотров - 279

1. Область определœения функции f(x) полностью может быть указана после исследования функции на непрерывность.

2. Непрерывность и точки разрыва функции f(x) исследуются по схеме:

> iscont(f, x=-infinity..infinity);

> d1:=discont(f,x);

> d2:=singular(f,x);

В результате наборам переменным d1и d2 будут присвоены значения x-координат в точках разрыва 1 и 2-го родов (если они будут найдены).

3. Асимптоты. Точки бесконечных разрывов определяют вертикальные асимптоты графика f(x). Уравнение вертикальной асимптоты имеет вид:

> yr:=d2;

Поведение функции f(x) на бесконечности характеризуется наклонными асимптотами (если они есть). Уравнение наклонной асимптоты y=kx+b, где коэффициенты вычисляются по формулам:

и .

Аналогичные формулы для . По этой причине нахождение наклонных асимптот можно провести по следующей схеме:

> k1:=limit(f(x)/x, x=+infinity);

> b1:=limit(f(x)-k1*x, x=+infinity);

> k2:=limit(f(x)/x, x=-infinity);

> b2:=limit(f(x)-k2*x, x=-infinity);

Часто оказывается, что k1=k2 и b1=b2, в этом случае будет одна асимптота при и при . С учетом этого составляется уравнение асимптоты

> yn:=k1*x+b1;

4. Экстремумы. Исследование функции f(x) на экстремумы можно проводить по схеме:

> extrema(f(x), {}, x, ’s’);

> s;

> fmax:=maximize(f(x), x);

> fmin:=minimize(f(x), x);

После выполнения этих команд будут найдены координаты (x, y) всœех максимумов и минимумов функции f(x).


Читайте также


  • - ИССЛЕДОВАНИЕ ФУНКЦИИ ПО ОБЩЕЙ СХЕМЕ

    1. Область определения функции f(x) – полностью может быть указана после исследования функции на непрерывность. 2. Непрерывность и точки разрыва функции f(x) исследуются по схеме: > iscont(f, x=-infinity..infinity); > d1:=discont(f,x); > d2:=singular(f,x); В результате наборам переменным d1и d2 будут... [читать подробенее]