Open Library - открытая библиотека учебной информации

Открытая библиотека для школьников и студентов. Лекции, конспекты и учебные материалы по всем научным направлениям.

Категории

Математика Интеграл Фурье
просмотров - 712

Достаточные условия представимости функции в интеграл Фурье.

Для того, чтобы f(x) была представлена интегралом Фурье во всœех точках непрерывности и правильных точках разрыва, достаточно:

1) абсолютной интегрируемости на

(ᴛ.ᴇ. интеграл сходится)

2) на любом конечном отрезке [-L, L] функция была бы кусочно-гладкой

3) в точках разрыва функции, ее интеграл Фурье определяется полусуммой левого и правого пределов в этих точках, а в точках непрерывности к самой функции f(x)

Интегралом Фурье функции f(x) принято называть интеграл вида:

, где ,

.

Интеграл Фурье для четной и нечетной функции

Пусть f(x)-четная функция, удовлетворяющая условиям представимости интегралом Фурье.

Учитывая, что , а также свойство интегралов по симметричному относительно точки x=0 интервалу от четных функций, из равенства (2) получаем:

(3)

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, интеграл Фурье четной функции f(x) запишется так:

,

где a(u) определяется равенством (3).

Рассуждая аналогично, получим, для нечетной функции f(x) :

(4)

и, следовательно, интеграл Фурье нечетной функции имеет вид:

,

где b(u) определяется равенством (4).

Комплексная форма интеграла Фурье

, (5)

где

.

Выражение в форме (5) является комплексной формой интеграла Фурье для функции f(x).

В случае если в формуле (5) заменить c(u) его выражением, то получим:

, где правая часть формулы принято называть двойным интегралом

Фуpье в комплексной форме. Переход от интеграла Фурье в комплексной форме к интегралу

в действительной форме и обратно осуществим с помощью формул:

Формулы дискретного преобразования Фурье

Обратное преобразование Фурье.

где n=1,2,... , k=1,2,...

Дискретным преобразованием Фурье - принято называть N-мерный вектор

при этом, .

ГЛАВА 2

ПРАКТИЧЕСКАЯ ЧАСТЬ


Читайте также


  • - Интеграл Фурье.

    Исследует предельный случай, когда промежуток , на котором заданная раскладывается в ряд Фурье, неограниченно расширяется, т.е. . Иными словами рассмотрим задачу о представлении непереодической функции, заданной на всей числовой оси, в виде, аналогичном ряду Фурье. Пусть... [читать подробенее]


  • - Интеграл Фурье.

    Ряд Фурье в комплексной форме. Преобразование Фурье. = Следовательно, . Теорема. Пусть 1) ограничена на R, 2) абсолютно интегрируема на R, 3)на любом конечном интервале удовлетворяет условиям Дирихле. Тогда , . Вывод (нестрогий). Рассмотрим разложение функции в... [читать подробенее]


  • - Интеграл Фурье

    Достаточные условия представимости функции в интеграл Фурье. Для того, чтобы f(x) была представлена интегралом Фурье во всех точках непрерывности и правильных точках разрыва, достаточно: 1) абсолютной интегрируемости на (т.е. интеграл сходится) 2) на любом конечном... [читать подробенее]


  • - Тема 7.4. Интеграл Фурье. Преобразование Фурье

    Вопросы для самопроверки 1. Сформулируйте условия Дирихле и теорему Дирихле. 2. В чем состоит особенность разложения в ряд Фурье четных и нечетных функций? 3. Выведите формулу для коэффициентов Фурье. 4. Приведите пример ортогональной системы функций на промежутке... [читать подробенее]


  • - Ряд интеграл Фурье.

    Определение периодической функции: , (1) где Т – период; n – любое целое числа положительное или отрицательное. Определение (1) выражает основное св-во периодичности функции, состоящее в том, что ход явления периодически повторяется и периодичность эта существует для... [читать подробенее]


  • - Интеграл Фурье

    Непрерывные преобразования Фурье и Лапласа Спектры непериодических сигналов конечной длительности (финитных), зарегистрированных на интервале Т, могут быть получены из уравнений для рядов Фурье как предельные значения функций суммирования при расширении периода Т... [читать подробенее]


  • - Преобразование и интеграл Фурье

    Если функция задана на всей числовой оси и не является периодической, то ее нельзя разложить в ряд Фурье, но можно представить интегралом Фурье. Если функция абсолютно интегрируема на всей числовой оси, т.е. то говорят, что функция принадлежит к классу Теорема 1. Если то... [читать подробенее]


  • - Интеграл Фурье

    Цепи при непериодических (импульсных) воздействиях При анализе реакции цепи на воздействие импульсных сигналов, а также при расчете переходных процессов (аналогично операторному методу) применяется спектральный (частотный) метод. Спектральный (частотный) метод... [читать подробенее]


  • - Рассмотрим интеграл Фурье

    . (31.8) Так как интеграл является чётной функцией аргумента , и в смысле главного значения равенство (31.8.) можно записать в виде . (31.9.) Аналогично, интеграл является нечётной функцией от , и в смысле главного значения . (31.10.) Вычитая из равенства (31.9.) равенство (31.10.),... [читать подробенее]


  • - Представление непериодических функций времени в частотной области. Интеграл Фурье

    Ряд Фурье допускает представление в частотной области толь­ко периодических функций времени. Однако часто имеют дело с непериодическими функциями, характерными, например, для коммутационных процессов, молнии или разрядов статического электричества и т. д. Мы исходим из... [читать подробенее]