Open Library - открытая библиотека учебной информации

Открытая библиотека для школьников и студентов. Лекции, конспекты и учебные материалы по всем научным направлениям.

Категории

Математика Асимптоты графика функции.
просмотров - 409

Волгодонск

Конспект лекции №6

по теме:

«Асимптоты кривых. Общая схема исследования функции»

 
 

Определœение: Прямая l принято называть асимптотой графика функции , если расстояние от точки М на графике до прямой l стремится к нулю при удалении точки М по графику функции от начала координат.

Асимптоты бывают вертикальные, горизонтальные, наклонные.

Вертикальной асимптотой принято называть прямая x=a, если .

Находят вертикальную асимптоту по точкам разрыва второго рода (бесконечный разрыв).

Наклонной асимптотой принято называть асимптота͵ уравнение которой имеет вид: .

Оказывается, что если является асимптотой, то и в уравнении определяются следующим образом , .

Доказательство:

По определœению асимптоты: если ОМ , то |MN|0.

Þ |MQ|→0 при x→±∞, т.к. .

По чертежу: .

Перейдем к пределу при x→±∞:

(*)

Þ .

.

Из (*) Þ .

Ч.т.д.

Замечание 1: Чтобы у кривой были наклонные асимптоты, нужно, чтобы соответствующие пределы в определœении k и b были конечными, причем предел при x→+∞ и предел при x→-∞ нужно вычислять отдельно.

Замечание 2: В случае если k=0, то y=b. Наклонная асимптота в этом случае принято называть горизонтальной.

Замечание 3: Кривая никогда не пересекает вертикальную асимптоту, а горизонтальные и наклонные асимптоты кривая может пересекать и даже бесконечное число раз.

Пример: Найти асимптоты графика функции .

D(y): x¹3.

Þ x=3 – точка разрыва.

— вертикальная асимптота.

=;

== ==3 Þ .

Þ — наклонная асимптота.

Схема полного исследования функции.

1. Определить естественную область D(y) определœения функции.

2. Исследовать на четность и нечетность.

3. Найти точки пересечения графика функции с осями координат.

4. Найти асимптоты.

5. Найти интервалы возрастания и убывания функции, точки экстремума.

6. Найти интервалы выпуклости графика, точки перегиба.

7. Построить график функции.

Пример:

Провести полное исследование и построить график функции .

1. Область определœения функции D(y): x¹1.

2. Т.к. область определœения не симметрична относительно начала координат, то функция не является ни четной, ни нечетной.

3. Точки пересечения с 0x: y=0 Þ Þ x=0 Þ точка (0, 0) – точка пересечения с осями.

4. x=1 – точка разрыва.

Вертикальная асимптота:

— вертикальная асимптота.

Наклонная асимптота: .

=;

===1 Þ .

— наклонная асимптота.

5. ==.

Критические точки: , ᴛ.ᴇ. числитель равен нулю Þ , ;

– не существует, ᴛ.ᴇ. знаменатель равен нулю Þ .

x (-∞;0) x=0 (0;1) x=1 (1;2) x=2 (2;+∞)
+ не существует +
возрастает max y(0)=0 убывает не существует убывает min y(2)=4 возрастает

6.

.

Критические точки второго рода:

, ᴛ.ᴇ. числитель равен нулю Þ точек нет;

– не существует, ᴛ.ᴇ. знаменатель равен нулю Þ Þ точек перегиба нет, т.к. x=1ÏD(y).

x (-∞;1) x=1 (1;+∞)
не существует +
вогнута не существует выпукла

7. График функции:

Вопросы для самоконтроля.

1. Что такое асимптота?

2. Какая асимптота принято называть вертикальной?

3. Написать уравнение наклонной асимптоты.

4. Когда наклонная асимптота принято называть горизонтальной?

Задачи для самоконтроля.

1. Провести полное исследование функции и построить ее график:

а) ; б) .


Читайте также


  • - Асимптоты графика функции.

    Определение. Прямая линия l называется асимптотой графика функции , если расстояние от текущей точки кривой до этой прямой стремится к нулю при неограниченном удалении текущей точки кривой от начала координат. Асимптоты бывают двух видов: вертикальные и наклонные. ... [читать подробенее]


  • - Асимптоты графика функции

    При исследовании поведения функции на бесконечности, т. е. при +¥ и при –¥, или вблизи точек разрыва второго рода часто оказывается, что расстояния между точками графика функции и точками некоторой прямой с теми же абсциссами сколь угодно малы. Такую прямую называют... [читать подробенее]


  • - Асимптоты графика функции

    Асимптотой графика функции y = f(x) называется прямая, обладающая тем свойством, что расстояние от точки (х, f(x)) до этой прямой стремится к нулю при неограниченном удалении точки графика от начала координат. На рисунке 3.10. приведены графические примеры вертикальной,... [читать подробенее]


  • - Асимптоты графика функции

    Асимптотой графика функции y=f`(x) называется прямая, расстояние от которой до точки(x, f`(x)) стремится к нулю при x® ¥ (-¥). Асимптоты бывают вертикальные, горизонтальные и наклонные . Теорема. Пусть функция y=f(x) определена в некоторой окрестности точки x0 и хотя бы один из... [читать подробенее]


  • - Асимптоты графика функции

    При исследовании поведения функции при и при , удобным оказывается рассмотрение асимптот графика функции. Прямая называется асимптотойграфика функции , если расстояние от точек графика до этой прямой стремится к нулю при неограниченном удалении этих точек по графику... [читать подробенее]


  • - Теорема о существовании наклонной асимптоты графика функции.

    Прямая y=kx + b - наклонная асимптотаграфика функции y = f(x), если существует и существует . Доказательство: 1) Если у графика существует наклонная асимптота y=kx + b, то, следовательно, а также: . 2) Если , то, следовательно, . Значит, прямая y=kx + b удовлетворяет определению... [читать подробенее]


  • - Найти асимптоты графика функции .

    , . И . И . И . Следовательно , наклонной асимптоты нет. ПРИМЕР.Найти асимптоты функции . ОДЗ функции: х&... [читать подробенее]


  • - Асимптоты графика функции.

    Волгодонск Конспект лекции №6 по теме: «Асимптоты кривых. Общая схема исследования функции»     Определение: Прямая l называется асимптотой графика функции , если расстояние от точки М на графике до прямой l стремится к нулю при удалении точки М по... [читать подробенее]


  • - Асимптоты графика функции

    Выпуклость, вогнутость графика функции. Точки перегиба. График функции f(x) называется выпуклым на интервале (a; b), если он расположен ниже касательной, проведенной к любой его точке. График функции f(x) называется вогнутым на интервале (a; b), если он расположен выше... [читать подробенее]


  • - Асимптоты графика функции.

    Графики некоторых функций расположены на плоскости так, что при неограниченном удалении от начала координат они неограниченно приближаются к некоторым прямым, но не пересекают их. Такие прямые называются асимптотами функции. Асимптоты могут быть горизонтальными,... [читать подробенее]