Open Library - открытая библиотека учебной информации

Открытая библиотека для школьников и студентов. Лекции, конспекты и учебные материалы по всем научным направлениям.

Категории

География Система координат на поверхности эллипсоида и сферы
просмотров - 481

Положение точки на поверхности эллипсоида может быть определœено в той или иной системе координат. Основная система координат – географическая с φ, λ (рис. 2).

Рис. 2. Система географических координат на эллипсоиде вращения

Географическая широта (φ) есть угол между плоскостью экватора и нормалью ОМ (отвесная линия) текущей точки М (рис. 2). Широта меняется от 0 до 90°.

Географическая долгота (λ) есть двугранный угол между плоскостями начального меридиана и меридиана текущей точки М. Долгота изменяется от 0 до 180° на запад и восток от начального меридиана. При картографических расчетах западные долготы берутся со знаком «минус», восточные – со знаком «плюс».

Кроме рассмотренной системы координат, существует целый ряд других, используемых в математической картографии:

- прямоугольная сфероидическая;

- сферическая полярная и др.

Под координатными линиями следует понимать геометрические места точек, для которых одна из координат постоянна. К примеру, параллель есть геометрическое место точек равных широт (φ = const), а меридиан есть геометрическое место точек равных долгот (λ = const).

Рис. 3. Система географических координат на сфере

В тех случаях, когда Земля принимается за сферу, географическими координатами называют сферические координаты φ, λ с полюсом системы координат, совпадающим с географическим полюсом (рис. 3).