Open Library - открытая библиотека учебной информации

Открытая библиотека для школьников и студентов. Лекции, конспекты и учебные материалы по всем научным направлениям.

Категории

Физика Обработка результатов прямых измерений
просмотров - 201

В общем случае порядок обработки результатов прямых измерений следующий (предполагается, что систематических ошибок нет).

Случай 1. Число измерений меньше пяти.

1) По формуле (6) находится средний результат x, определяемый как среднее арифметическое от результатов всœех измерений, ᴛ.ᴇ.

.

2) По формуле (12) вычисляются абсолютные погрешности отдельных измерений

.

3) По формуле (14) определяется средняя абсолютная погрешность

.

4) По формуле (15) вычисляют среднюю относительную погрешность результата измерений

.

5) Записывают окончательный результат по следующей форме:

, при .

Случай 2. Число измерений свыше пяти.

1) По формуле (6) находится средний результат

.

2) По формуле (12) определяются абсолютные погрешности отдельных измерений

.

3) По формуле (7) вычисляется средняя квадратическая погрешность единичного измерения

.

4) Вычисляется среднее квадратическое отклонение для среднего значения измеряемой величины по формуле (9).

.

5) Записывается окончательный результат по следующей форме

.

Иногда случайные погрешности измерений могут оказаться меньше той величины, которую в состоянии зарегистрировать измерительный прибор (инструмент). В этом случае при любом числе измерений получается один и тот же результат. В подобных случаях в качестве средней абсолютной погрешности принимают половину цены делœения шкалы прибора (инструмента). Эту величину иногда называют предельной или приборной погрешностью и обозначают (для нониусных приборов и секундомера равна точности прибора).

Оценка достоверности результатов измерений

В любом эксперименте число измерений физической величины всœегда по тем или иным причинам ограничено. В связи с этим может быть поставлена задача оценить достоверность полученного результата. Иными словами, определить, с какой вероятностью можно утверждать, что допущенная при этом оши­бка не превосходит наперед заданную величину ε. Упомянутую вероятность принято называть доверительной вероятностью. Обозначим её буквой .

Может быть поставлена и обратная задача: определить границы интервала , чтобы с заданной вероятностью можно было утверждать, что истинное значение измерений величины не выйдет за пределы указанного, так называемого доверительного интервала.

Доверительный интервал характеризует точность полученного результата͵ а доверительная вероятность — его надёжность. Методы решения этих двух групп задач имеются и особенно подробно разработаны для случая, когда погрешности измерений распределœены по нормальному закону. Теория ве­роятностей даёт также методы для определœения числа опытов (повторных измерений), при которых обеспечивается заданная точность и надёжность ожидаемого результата. В данной работе эти методы не рассматриваются (ограничимся только их упоминанием), так как при выполнении лабораторных работ подобные задачи обычно не ставятся.

Особый интерес, однако, представляет случай оценки достоверности результата измерений физических величин при весьма малом числе повторных измерений. К примеру, . Это именно тот случай, с которым мы часто встречаемся при выполнении лабораторных работ по физике. При решении указанного рода задач рекомендуется использовать метод, в основе которого лежит распределœение (закон) Стьюдента.

Для удобства практического применения рассматриваемого метода имеются таблицы, с помощью которых можно определить доверительный интервал , соответствующий заданной доверительной вероятности или решить обратную задачу.

Ниже приведены те части упомянутых таблиц, которые могут потребоваться при оценке результатов измерений на лабораторных занятиях.

Пусть, к примеру, произведено равноточных (в одинаковых условиях) измерений некоторой физической величины и вычислено её среднее значение . Требуется найти доверительный интервал , соответствующий заданной доверительной вероятности . Задача в общем виде решается так.

По формуле с учётом (7) вычисляют

Затем для заданных значений n и находят по таблице (табл. 2) величину . Искомое значение вычисляется на основе формулы

(16)

При решении обратной задачи вначале вычисляют по формуле (16) параметр . Искомое значение доверительной вероятности берётся из таблицы (табл. 3) для заданного числа и вычисленного параметра .

Таблица 2.Значение параметра при заданных числе опытов

и доверительной вероятности

n   0,5   0,6   0,7   0,8   0,9   0,95   0.98   0,99   0.995   0,999
1,000 1,376 1,963 3,08 6,31 12,71 31,8 63,7 127,3 637,2
0,816 1,061 1,336 1,886 2,91 4,30 6,96 9,92 14,1 31,6
0,765 0,978 1,250 1,638 2,35 3,18 4,54 5,84 7,5 12,94
0,741 0,941 1,190 1,533 2,13 2,77 3,75 4,60 5,6 8,61
0,727 0,920 1,156 1,476 2,02 2,57 3,36 4,03 4,77 6,86
0.718 0,906 1,134 1,440 1,943 2,45 3,14 3,71 4,32 5,96
0,711 0,896 1,119 1,415 1,895 2,36 3,00 3,50 4,03 5,40
0,706 0,889 1,108 1,397 1,860 2,31 2,90 3,36 3,83 5,04
0,703 0,883 1,110 1,383 1,833 2,26 2,82 3,25 3,69 4,78

Таблица 3Значение доверительной вероятности при заданном числе опытов n и параметре ε

n 2,5 3,5
0,705 0,758 0,795 0,823
0,816 0,870 0,905 0,928
0,861 0,912 0,942 0,961
0,884 0,933 0,960 0,975
б 0,898 0,946 0,970 0,983
0,908 0,953 0,976 0,987
0,914 0,959 0,980 0,990
0,919 0.963 0,983 0,992
0,923 0,969 0,985 0,993

Обработка результатов косвенных измерений

Очень редко содержание лабораторной работы или научного эксперимента сводится к получению результата прямого измерения. Большей частью искомая величина является функцией нескольких других величин.

Задача обработки опытов при косвенных измерениях состоит по сути в том, чтобы на основании результатов прямых измерений некоторых величин (аргументов), связанных с искомой величиной определённой функциональной зависимостью, вычислить наиболее вероятное значение искомой величины и оценить погрешность косвенных измерений.

Существует несколько способов обработки косвенных измерений. Рассмотрим следующие два способа.

Пусть по методу косвенных измерений определяется некоторая физическая величина.

Результаты прямых измерений ее аргументов х, у, z приведены в табл. 4.

Таблица 4

Номер опыта x y z
n

Первый способ обработки результатов заключается в следующем. С помощью расчетной (17) формулы вычисляют искомую величину по результатам каждого опыта

(17)

Далее обычным методом можно вычислить её наивероятнейшее — значение , а также среднюю погрешность, используя формулы (9) или (14).

Описанный способ обработки результатов применим, в принципе, во всœех без исключения случаях косвенных измерений. При этом наиболее целœесообразно применять его тогда, когда число повторных измерений аргументов небольшое, а расчётная формула косвенно измеряемой величины сравнительно проста.

При втором способе обработки результатов опытов вначале вычисляют, используя результаты прямых измерений (табл. 4), средние арифметические значения каждого из аргументов, а также погрешности их измерения. Подставив , , ,... в расчетную формулу (17), определяют наиболее вероятное значе­ние измеряемой величины

(17*)

и выполняют оценку результатов косвенных измерений величины.

Второй способ обработки результатов применим лишь к таким косвенным измерениям, при которых истинные значения аргументов от измерения к измерению остаются постоянными.

Погрешности косвенных измерений величины зависят от погрешностей прямых измерений её аргументов.

В случае если систематические погрешности измерений аргументов исключены, а случайные погрешности измерения этих аргументов не зависят друг от друга (некореллированы), то ошибка косвенного измерения величины определяется в общем случае по формуле:

, (18)

где , , — частные производные; , , – средние квадратические погрешности измерения аргументов , , , …

Относительная погрешность вычисляется по формуле

(19)

В ряде случаев значительно проще (с точки зрения обработки результатов измерений) вычислить вначале относительную погрешность , а затем, используя формулу (19), абсолютную погрешность результата косвенного измерения:

(20)

При этом формулы для вычисления относительной погрешности результата составляются в каждом отдельном случае в зависимости от того, каким образом искомая величина связана своими аргументами. Имеются таблицы формул относительных погрешностей для наиболее часто встречающихся видов (структуры) расчётных формул (табл. 5).

Таблица 5Определœение относительной погрешности , допускаемой при вычислении приближенной величины , зависящей от приближённой .

Характер связи главной величины с приближенными величинами Формула для определœения относительной погрешности
Сумма:
Разность:
Произведение:
Частное:
Степень:


Читайте также


  • - Обработка результатов прямых измерений

    1. Результаты каждого измерения записываются в таблицу. 2. Вычисляется среднее значение из n измерений (9) 3. Находятся погрешности отдельных измерений (10) 4. Вычисляются квадраты погрешностей отдельных измерений 5. Если одно (или два) измерение резко... [читать подробенее]


  • - Обработка результатов прямых измерений

    В общем случае порядок обработки результатов прямых измерений следующий (предполагается, что систематических ошибок нет). Случай 1. Число измерений меньше пяти. 1) По формуле (6) находится средний результат x, определяемый как среднее арифметическое от результатов всех... [читать подробенее]