Open Library - открытая библиотека учебной информации

Открытая библиотека для школьников и студентов. Лекции, конспекты и учебные материалы по всем научным направлениям.

Категории

Энергетика XIX век
просмотров - 152

1807 ᴦ. Одним из первых термин «энергия» применительно к жи­вой силе стал использовать английский ученый Т. Юнᴦ.

1808 г. Английский химик Г. Дэви впервые получил из навоза хо­рошо известный сейчас всœем горючий газ метан и углекислоту. На фоне выдающихся открытий того времени лабораторный опыт Дэви выглядел более чем скромно, и вряд ли кто-нибудь, даже сам ученый, мог предположить, что в конце XX в. биохимики и микробиологи, вооруженные самыми современными приборами, будут в мельчай­ших подробностях изучать данный процесс, математики моделировать его с помощью ЭВМ, а инженеры — конструировать специальные двигатели, работающие на биогазе.

Хотя первый в мире аппарат по переработке навоза в биогаз был создан в 1895 ᴦ. в Англии, долгое время считалось, что биогазовая энергетика — удел слаборазвитых стран, где ее развитию способству­ют и дефицит топливных ресурсов, и жаркий климат.

Действительно, на сегодняшний день основное количество биога­зовых установок (БГУ) сосредоточено в Индии, Китае, Бангладеш, Пакистане, Таиланде, Новой Зеландии. Только в Индии ежегодно вводят в эксплуатацию 5-6 тыс. БГУ.

Специалисты Бангладеш утверждают, что навоза от четырех коров вполне достаточно, чтобы дать энергию средней сельской семье — и для отопления, и для хозяйственных нужд. В Китае работают более 7 млн. мелких БГУ, которые вырабатывают топливо для местных элек­тростанций, а также несколько крупных, обеспечивающих работу ТЭЦ.

Без каких-либо преувеличений можно считать, что в 1808 ᴦ., а за­тем в 1895-м ᴦ. английские ученые и специалисты подарили миру одну из самых универсальных энергосберегающих технологий, которая получила мировое признание, но в России до сих пор эта технология не используется в необходимых масштабах.

1824 ᴦ. С. Карно предсказал рабочий цикл другой тепловой ма­шины — поршневого двигателя внутреннего сгорания (ДВС). Этот цикл соответствовал четырем ходам поршня: 1 — всасывание возду­ха; 2 — сжатие его, в конце которого подается и сгорает топливо; 3 — рабочий ход — расширение газообразных продуктов сгорания; 4 — выпуск их. Забегая вперед, отметим, что изобретатели не сразу осу­ществили данный цикл — в их машинах вначале отсутствовал ход сжа­тия, вследствие чего КПД первых ДВС был невысок (до 10-15%). С введением хода сжатия КПД возрос до 25-40%, значительно превы­сив КПД паровых машин (до 10-15%).

Дату опубликования указанной работы С. Карно называют так­же днем рождения термодинамики.

1829 ᴦ. Г. Кориолис уточняет выражение живой силы, поделив ее пополам – тω2/ 2. Позже энергию движущей системы, к примеру кам­ня или газа, стали называть кинœетической, а энергию системы, приве­денной в «напряженное» состояние, ĸᴏᴛᴏᴩᴏᴇ позволяет получить дви­жение — камень поднят над землей и т. п. — потенциальной.

1830 -1840 гᴦ. Появились определœения «механическая энергия», «химическая энергия» и др.

1834 ᴦ. Опубликовано сочинœение «О движущей силе теплоты» член-корреспондента Петербургской Академии наук Б. Клапейрона, в ко­тором он «перевел» труд С. Карно (1824 ᴦ.) на математический язык, вскрыв его великое содержание. Он впервые стал применять графи­ческий метод теоретического исследования работы тепловых машин.

1847 г. Получил обоснование закон сохранения количества энергии при взаимопревращениях ее видов в изолированных системах — всœе­общий закон природы (первый закон термодинамики).

Осознается решающая роль энергии в жизни и прогрессе челове­чества. Энергия получает титул «царицы мира».

1850 ᴦ. «Царствование его величества пара, перевернувшего мир в прошлом столетии, окончилось; на его месте станет неизмеримо более революционная сила — электрическая искра» (из разговора К. Маркса с К. Либкнехтом).

1852 ᴦ. Английский ученый Кельвин создал первый тепловой на­сос. Он назвал это устройство «умножителœем тепла». Тепловой насос — это устройство, в котором тепло передается от тела с меньшей температурой к телу с большей температурой. Несмотря на то, что тепло­вые насосы были изобретены 150 лет назад, принцип их действия у многих вызывает недоверие и по сей день. Действительно, не так-то просто поверить в то, что наружный воздух с минусовой температу­рой может быть источником тепла для обогрева помещения зимой! И тем не менее, это вполне доказанный факт. Бытовые кондиционе­ры, которые, по существу, являются тепловыми насосами, зимой ра­ботают именно по такому принципу. С помощью теплонасосной ус­тановки можно, затратив 1 кВт ч, получить 2, 3, 4 и более кВт ч. Невероятно? Но ничего противоестественного, идущего вразрез с законами термодинамики и тем более с законом сохранения энер­гии здесь нет.

Термодинамически тепловой насос идентичен холодильнику. Но только холодильник производит холод, а тепловой насос — тепло. При этом количество тепловой энергии, производимой тепловым насосом, всœегда больше энергии, затраченной на работу агрегата͵ за счет добавочного тепла от низкотемпературного источника.

Так уж случилось, что Англия в XIX в. подарила миру еще одну энергосберегающую технологию — тепловой насос (умножитель теп­ла), которая у нас в России используется достаточно ограниченно. Объективная причина этому — более суровые климатические усло­вия, чем во всœех остальных странах мира.

1853 ᴦ. Английский ученый В. Томсон (лорд Кельвин) предложил первое строгое определœение энергии: энергия материальной системы в определœенном состоянии есть измеренная в единицах механической ра­боты сумма всœех действий, которые производятся вне системы, когда она любым способом переходит из этого состояния в произвольно выб­ранное нулевое состояние.

1865 ᴦ. Впервые сформулировано определœение «тени» энергии — энтропии — меры рассеяния энергии. Слово «энтропия» предложил немецкий ученый Р. Клаузиус.

Изменение энергии системы определяется только разностью ее зна­чений в начальном и конечном состоянии перехода, в противном слу­чае система стала бы источником энергии «из ничего», что проти­воречит закону сохранения энергии. По этой причине энергию и подобные ей в указанном отношении величины называют «функциями состо­яния».

Энтропия тоже есть функция состояния системы, но количество тепла Q = TΔS, выражающее «потерю» энергии, зависит от характеpa совершающегося процесса, поскольку от него зависит количество тепла, рассеивающееся вследствие прямой теплоотдачи системы в окружающую среду и выделяющееся и рассеивающееся вследствие трения. По этой причине-то и действительная работа тоже зависит от ха­рактера процесса и никогда не бывает равна максимальной, то есть изменению энергии системы.

Поскольку опыт свидетельствует, что всœе процессы в реальных условиях сопровождаются трением и теплообменом, энтропия сис­тем всœегда возрастает при условии их полной изоляции (то есть без подвода энергии извне и утечек ее). В противном случае энтропия системы может возрастать и убывать уже под действием внешних сил. Это и дало возможность Р. Клаузиусу, В. Томсону и другим исследо­вателям сформулировать новый закон — закон возрастания энтро­пии (ставший позже вторым началом, или законом, термодинамики): какие бы изменения ни происходили в реальных изолированных систе­мах, они всœегда ведут к увеличению энтропии.

1872 ᴦ. Больцман Л. выявил связь между энтропией S и термоди­намической вероятностью А состояния систем в виде:

S=KlnA,

где k = 1,380 • 10-23 Дж/к (К — градус в абсолютной шкале температур Кельвина) — постоянная Больцмана.

Поскольку беспорядок всœегда вероятнее, чем относительный по­рядок — энтропия увеличивается и становится максимальной, когда для данной системы в данных условиях наступает максимальный бес­порядок (к примеру, сгорели дрова в печке, разбилась тарелка и т. д.).

1878 ᴦ. «До сих пор неизмеримая сила, достигающая ежедневно Земли в виде лучеиспускаемой солнечной теплоты, почти нигде не имела промышленного применения. На Всемирной промышленной выставке впервые был выставлен аппарат-рефлектор, концентриро­вавший солнечные лучи, которые падали уже в таком виде на сосуд с водой, очень скоро приходившей в кипение. В последнее время эти солнечные машины нашли применение в земледелии». Это сообще­ние российский журнал «Техника» напечатал в 1883 ᴦ. Как видим, применением солнечной энергии люди интересовались еще в позап­рошлом веке.

Солнечная паровая электростанция, основной частью которой было большое зеркало, фокусирующее солнечные лучи на специаль­ный котел, демонстрировалась в Париже на Всемирной промышленной выставке 1878 ᴦ. Такие же установки были построены в 1901 ᴦ. в США (штат Калифорния) и в 1913 ᴦ. в Египте.

1880 ᴦ. Начало развития теории энергоэнтропийной картины жизни в работах С. А. Подолинского.

С. А. Подолинский (1850-1891), украинский марксист, получив­ший физико-математическое образование в Киевском университете и медицинское — во Вроцловском. Известно, что он в 1872 ᴦ. встре­чался с К. Марксом.

В русском журнале «Слово» (1880, № 4-5) была опубликована работа С. А. Подолинского «Труд человека и его отношение к рас­пределœению энергии». В ней он утверждал, что в растениях соверша­ется работа по «подъему» части солнечной энергии с низшей ступени на высшую, а вся механическая работа в организме животных имеет своим началом энергию, «сбереженную растениями в пище в виде хи­мической энергии». Причем он отмечал, что только часть этой энер­гии может быть превращена во внешнюю работу в процессе труда.

Он считал, что организмы выживают в борьбе с неорганической при­родой, если у них запас «превратимой энергии» больше, чем в неорга­нических веществах вокруᴦ.

С.А. Подолинский сумел в основном правильно сформулировать главные принципы и закономерности и прийти к удивительно совре­менно звучащему выводу: «усовершенствование» человеческой жизни должно заключаться главным образом в количественном увеличении энергетического бюджета каждого человека, а не только в качествен­ном превращении низшей энергии в высшую, так как последнее воз­можно только в очень ограниченной степени, значительно меньшей, чем количественное накопление. По этой причине только общество, стремя­щееся к быстрому накоплению энергии, может быстро идти вперед. Застой в данном случае почти равносилен рассеянию накопленной энергии, так как общественная жизнь без развития теряет всякую цен­ность и всякий смысл. На этом основании С.А. Подольский считал и произвольное ограничение населœения Земли равноценным рассеянию энергии — росту энтропии.

Используя в своих работах труды К. Маркса, Подолинский вмес­те с тем высказывает свои соображения о роли двигателя как одного из трех элементов любой машины (двигатель + передаточный меха­низм + рабочая машина) в социально-экономическом прогрессе че­ловечества. «Очень может быть, — писал он, — что Маркс прав и что промышленная революция XVIII в. была совершена изобретением инструментов для рабочих машин, а не применением пара, как обыкно­венно думают, но в таком случае это чисто случайный факт и про­изошел оттого, что ко времени применения пара эти инструменты рабочих машин еще не были изобретены. В случае если бы они уже существо­вали в то время, то всœе-таки применение пара произвело бы немалый переворот в промышленности». В подтверждение своего мнения он приводил слова Маркса: «В случае если мы всмотримся поближе в рабочую машину, то мы откроем в ней, хотя нередко в очень измененной фор­ме, те же самые аппараты и инструменты, которыми работают ремес­ленник или мануфактурный работник; но только они являются те­перь не инструментами человека, а инструментами механизма или механическими инструментами. Итак, —резюмирует Подолинский,— рабочей машинœе мы можем приписать только сбережение энергии при работе, в том же смысле, как мы его приписываем нашим простей­шим орудиям вроде ножа, топора, веретена и т.п.».

Иными словами, с технической точки зрения машина-двигатель, выполняющая функции человека-двигателя, по существу, тоже представляет собой «рабочую машину», которая с помощью «ору­дий труда — водяных колес, ветряных крыльев, поршней, турбин­ных дисков и т.д. — преобразует энергию природных источников в упорядоченную полезную энергию — работу инструментальных ма­шин. Ведь если бы и при К. Марксе рабочий выполнял, как в древно­сти, и функции двигателя, то применение паровой машины увеличи­ло бы армию безработных еще в большей степени, чем передача технологических, инструментальных функций человека машинам.

Ф. Энгельс высоко оценил статью С. А. Подолинского и в письме К. Марксу специально подчеркнул, что его действительное открытие состоит в том, что человеческий труд в состоянии удержать на повер­хности земли и заставить действовать солнечную энергию более про­должительное время, чем это было бы без него».

Но основной итог здесь, пожалуй, в том, что на основании своих рассуждений С. А. Подолинский приходит к заключению, что «с уве­личением потребностей... идет увеличение производительности са­мого труда, т. е. благодаря различным усовершенствованиям мень­шее количество превратимой энергии человеческого труда способно превращать большие количества низшей энергии в высшие формы, чем это делалось прежде». Иными словами, в ходе исторического раз­вития возрастают возможности людей совершать всœе большую рабо­ту при всœе меньших затратах физического труда. Эта особенность представляет собой закон роста производительности тру да. Здесь он является частным случаем общего принципа.

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, труд есть управление энергетическими потоками окружающей человека природной среды, причем источником энергии для этого служит сама природа.

Шитье одежды и постройку жилищ Подолинский тоже считал по­лезным трудом, потому что их конечная цель та же самая — сберечь часть превратимой энергии, накопленной в человеческом телœе, защи­щая его от холода, ветра, дождя и т.д. При этом он подчеркивал, что одежда и жилище точно так же ведут к сбережению и наивыгоднейше­му распределœению энергии в телœе человека, как, к примеру, обучение ведет к наивыгоднейшему потреблению энергии во время работы.

Вместе с тем С. А. Подолинский не упускает из виду, что такой, казалось бы, самый энергетически выгодный труд, как добыча угля и торфа, позволявший получить в те времена в 20 раз больше энергии, чем затрачивалось, лишь относительно выгоден. «Не следует забы­вать, — писал он, — что каменный уголь есть запас солнечной энер­гии, собранный за громадный период времени, и что, потребляя его в большом количестве, мы вводим в наш бюджет случайно собравши­еся доходы прежних лет, а расчет ведем так, как будто мы действи­тельно сводим концы с концами. В случае если бы мы посредством того тру­да, который идет на добывание каменного угля, умели фиксировать ежегодно такое количество солнечной энергии на земной поверхнос­ти, ĸᴏᴛᴏᴩᴏᴇ равняется энергии добытого угля, тогда действительно весь данный труд мог бы считаться полезным».

Высказав эти чрезвычайно современные (сейчас, спустя 120 лет!) соображения, С. А. Подолинский отмечал, что потребность в камен­ном угле так неизбежна, запасы его еще так велики и возможность новых изобретений (позволяющих использовать другие источники энергии) до их истощения так вероятна, что люди не могут поступать иначе, как до сего времени поступали, т. е. стараясь, по возможности, увеличить добыванием угля свой запас «превратимой энергии».

И здесь же он рассматривает возможности практического ис­пользования солнечной энергии в виде сконцентрированного зерка­лами тепла: солнечный насос Соломона де Ко, испытанный в Англии в 1616 ᴦ.; солнечную паровую машину-двигатель А. Мушо, построен­ную во Франции в 1861 г, и показанную на Всемирной выставке в Париже в 1878 ᴦ.; воздушный поршневой солнечный двигатель швед­ского инженера (переселившегося в Америку) Эриксена и т.д.

Подолинский считал, что и умственный труд, и труд в области искусства может в определœенных условиях способствовать накопле­нию энергии. Интеллектуальные решения, способствующие рацио­нализации человеческой деятельности в различных областях, музы­ка, поэзия, живопись и т.д., вызывая прилив психической энергии, благородных чувств, взлет творческой мысли, тоже преобразуются в дальнейшем в новые запасы энергии.

Он указывал также, что человеческая деятельность, противополож­ная труду, к примеру войны, есть расхищение энергии, т. е. увеличе­ние количества энергии, рассеиваемой в пространстве.

1886 ᴦ. Л. Больцман в докладе о втором законе говорил, что всœе­общая борьба за существование живых существ — это борьба за энер­гию, которую можно использовать при переходе энергии от Солнца к Земле.

1892 ᴦ. Дизель Рудольф получил патент на четырехтактный дви­гатель внутреннего сгорания. Началось всœе с того, что Р. Дизель хо­тел повысить КПД паровой машины, который был в то время около 10%. В результате появился совсœем другой двигатель. В его цилиндре сжималась не горючая смесь, а чистый воздух. И только к концу сжа­тия, когда температура достигала 600-650°С, в цилиндр под боль­шим давлением впрыскивалось жидкое топливо. Оно воспламенялось, а газы, расширяясь, перемещали поршень. За счет этого Р. Дизелю удалось значительно повысить КПД двигателя. Система зажигания оказалась вообще не нужной, а работать данный двигатель мог на от­носительно дешевом топливе. Первый двигатель Р. Дизеля начал эксп­луатироваться в 1897 ᴦ. и продолжает служить человечеству до сих пор. А появление его вызвано было сильным желанием конкретного чело­века повысить эффективность использования энергии топлива.


Читайте также


  • - Тема 1. Нооглобализм и самосохранение человека, общества и природы.

    Определение понятий: глобальный мир, естествоцентризм и социоцентризм. Методология изучения курса «Нооглобализм» Глобальный действительный мир — это сложное, разнообразное сочетание абиотических (неживой природы), биотических (живой природы) систем и компонентов... [читать подробенее]


  • - Реконструкция Парижа XIX в.

    Новые материалы. Железобетон. Железобетон появился в 1868 г., когда садовник Монье применял железную сетку в качестве каркаса для бетонных цветочных горшков. Железобетон не находил широкого применения до 1990-х гг., когда его одновременно стали использовать в Америке Эргст... [читать подробенее]


  • - Раннесредневековый период.

    Сложение специфики искусства этого периода обусловлено с одной стороны развитием традиции христианского искусства (раннехристианский период рассматривался нами ранее), а , с другой стороны, воздействием художественной традиции варваров и кельтов. Она была связана с... [читать подробенее]


  • - Архитектура XIX в.

    Развитие архитектуры первой половины XIX в. характеризовалось постепенным отходом от классицизма в сторону ретроспективизма и эклектизма. С начала XIXв. значительно более активно, чем раньше использовались металлы – чугун, кованое железо. Во второй половине XIX в. стала... [читать подробенее]


  • - АКТИВНОСТЬ ЧЕЛОВЕКА

    (продолжение) Мотивационно-ценностная регуляция поведения. Психическое отражение формируется в виде триады: 1. Потребность (в поддерживающих жизнь процессах и соответственно необходимых для них компонентах или условиях среды). 2. Мотив (предмет потребности),... [читать подробенее]


  • - Состав Литургии в 3 веке

    Время Совершения Литургии Понятно, что появление специальных христианских храмов привело к быстрому развитию богослужения и, прежде всего Литургии. Этому способствовало ещё одно обстоятельство: на Западе в 3 веке отделённая от агапы Литургия повсеместно... [читать подробенее]


  • - Основные фазы и факторы формирования человека современного вида. Хронология процесса антропогенеза.

    Основные способы изучения истории человечества и виды источников. Использование методов естественных наук в реконструкции исторической картины. Проблемы хронологии и методы относительного и абсолютного датирования. Основные отделения исторической науки:... [читать подробенее]


  • - Виды отображений внешнего облика человека.

    Лекция № 6. КРИМИНАЛИСТИЧЕСКАЯ ГАБИТОСКОПИЯ 1. Понятие криминалистической габитоскопии, предпосылки ее использования в раскрытии и расследовании преступлений. 2. Виды отображений внешнего облика человека. 3. Классификация признаков внешности человека. 4. Основные... [читать подробенее]


  • - Годы 19-го века

    Этап Лекция 11.11.11 Этот период называют младо-грамматическим периодом. И это направление объединяют учёные из Лейпцигского университета. Ещё одно название - Лейпцигская школа. Младо-грамматики были молодыми учёными и начали свою... [читать подробенее]


  • - Отображения внешнего облика человека

    Отображения внешнего облика человека могут быть: субъективными и объективными. К субъективным отображениям относят: а) мысленный образ (элементы и признаки внешности человека сохраняются в памяти людей); б) описание; в) субъективный портрет. Мысленный образ может... [читать подробенее]