Open Library - открытая библиотека учебной информации

Открытая библиотека для школьников и студентов. Лекции, конспекты и учебные материалы по всем научным направлениям.

Энергетика Адиабатический процесс. Политропный процесс
просмотров - 102

Адиабатическимпринято называть процесс, при котором отсутствует теплообмен (dQ=0) между системой и окружающей средой. К адиабатическим процессам можно от-

нести всœе быстропротекающие процессы. К примеру, адиабатическим процессом можно считать процесс распространения звука в среде, так как скорость распро­странения звуковой волны настолько вели­ка, что обмен энергией между волной и средой произойти не успевает. Адиаба­тические процессы применяются в двига­телях внутреннего сгорания (расширение и сжатие горючей смеси в цилиндрах), в холодильных установках и т. д.

Из первого начала термодинамики (dQ=dU+dA) для адиабатического про­цесса следует, что

dA=-dU, (55.1)

т. е. внешняя работа совершается за счет изменения внутренней энергии системы.

Используя выражения (52.1) и (53.4), для произвольной массы газа перепишем уравнение (55.1) в виде

Продифференцировав уравнение состоя­ния для идеального газа pV=(m/M)RT, получим

Исключим из (55.2) и (55.3) температу­ру Т:

Разделив переменные и учитывая, что Срv =g (см. (53.8)), найдем

dp/p=-gdV/V.

Интегрируя это уравнение в пределах от р1 до р2 и соответственно от V1 до V2, а затем потенцируя, придем к выражению

p2/pl=(V1/V2)g.

или

p1vg1 = p2vg2.

Так как состояния 1 и 2 выбраны про­извольно, то можно записать

рVg=const. (55.4)

Полученное выражение есть уравнение адиабатического процесса, называемое также уравнением Пуассона.

Для перехода к переменным Т, V или р, Т исключим из (55.4) с помощью урав­нения Клапейрона — Менделœеева

соответственно давление или объем:

Выражения (55.4) — (55.6) представ­ляют собой уравнения адиабатического процесса. В этих уравнениях безразмер­ная величина (см. (53.8) и (53.2))

принято называть показателœем адиабаты(или коэффициентом Пуассона).Для одно­атомных газов (Ne, He и др.), достаточно хорошо удовлетворяющих условию иде­альности, i = 3, g=1,67. Для двухатомных газов (Н2, N2, O2 и др.) i= 5, g=1,4. Зна­чения g, вычисленные по формуле (55.7), хорошо подтверждаются экспериментом.

Диаграмма адиабатического процесса (адиабата)в координатах р, V изобража­ется гиперболой (рис.83). На рисунке видно, что адиабата (pVg=const) более крута͵ чем изотерма (pV=const). Это объясняется тем, что при адиабатическом сжатии 13 увеличение давления газа обусловлено не только уменьшением его объема, как при изотермическом сжатии, но и повышением температуры.

Вычислим работу, совершаемую газом в адиабатическом процессе. Запишем уравнение (55.2) в виде

В случае если газ адиабатически расширяется от объема V1 до V2, то его температура уменьшается от T1 до T2 и работа расши­рения идеального газа

Применяя те же приемы, что и при выводе формулы (55.5), выражение (55.8) для работы при адиабатическом расшире­нии можно преобразовать к виду

Работа͵ совершаемая газом при адиа­батическом расширении 12 (определяется площадью, выполненной в цвете на рис. 83), меньше, чем при изотермическом. Это объясняется тем, что при адиабатическом расширении происходит охлаждение газа, тогда как при изотермическом — темпера­тура поддерживается постоянной за счет притока извне эквивалентного количества теплоты.

Рассмотренные изохорный, изобарный, изотермический и адиабатический процес­сы имеют общую особенность — они про­исходят при постоянной теплоемкости. В первых двух процессах теплоемкости соответственно равны Cv и Ср, в изотерми­ческом процессе (dT=0) теплоемкость равна ±¥, в адиабатическом (dQ=0) теплоемкость равна нулю. Процесс, в ко­тором теплоемкость остается постоянной, принято называть политропным.

Исходя из первого начала термодина­мики при условии постоянства теплоемко­сти (C = const) можно вывести уравнение политропы:

pVn = const, (55.9) где n=(C-Ср)/(С-Cv) — показатель политропы. Очевидно, что при С = 0, n=g из (55.9) получается уравнение адиабаты; при С=¥, n =1 —уравнение изотермы; при С=СР, n = 0уравнение изобары, при С = Сv, n=±¥ —уравнение изохоры. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, всœе рассмотренные процессы являются частными случаями политропного процесса.

§56. Круговой процесс (цикл). Обратимые и необратимые процессы

Круговым процессом(или циклом)назы­вается процесс, при котором система, пройдя через ряд состояний, возвращает­ся в исходное. На диаграмме процессов цикл изображается замкнутой кривой (рис.84). Цикл, совершаемый идеальным газом, можно разбить на процессы расши­рения (12) и сжатия (21) газа. Рабо­та расширения (определяется площадью фигуры 1a2V2V11) положительна (dV>0), работа сжатия (определяется площадью фигуры 2b1V1V22) отрицательна (dV<0), Следовательно, работа͵ совершаемая газом за цикл, определяется площадью, охватываемой замкнутой кривой. В случае если за циклсовершается положительная ра­бота (цикл протекает по часовой стрелке), то он принято называть пря­мым(рис. 84, а), если за цикл совершает­ся отрицательная работа (цикл протекает против часовой стрел­ки), то он принято называть обратным(рис. 84,б).

Прямой цикл используется в тепловых двигателях — периодически действующих двигателях, совершающих работу за счет полученной извне теплоты. Обратный цикл

используется в холодильных машинах — периодически действующих установках, в которых за счет работы внешних сил теплота переносится к телу с более высо­кой температурой.

В результате кругового процесса система возвращается в исходное состоя­ние и, следовательно, полное изменение внутренней энергии газа равно нулю. По­этому первое начало термодинамики (51.1) для кругового процесса

Q=DU+A=A, (56.1)

т. е. работа͵ совершаемая за цикл, равна количеству полученной извне теплоты. Од­нако в результате кругового процесса система может теплоту как получать, так и отдавать, в связи с этим

Q=Q1-Q2,

где Q1— количество теплоты, полученное системой, q2 — количество теплоты, от­данное системой. По этой причинетермический коэффициент полезного действия для кру­гового процесса

Термодинамический процесс называет­ся обратимым,если он может происходить как в прямом, так и в обратном направле­нии, причем если такой процесс происхо­дит сначала в прямом, а затем в обратном направлении и система возвращается в ис­ходное состояние, то в окружающей среде и в этой системе не происходит никаких изменений. Всякий процесс, не удовлетво­ряющий этим условиям, является необра­тимым.

Любой равновесный процесс является обратимым. Обратимость равновесного процесса, происходящего в системе, следу­ет из того, что ее любое промежуточное состояние есть состояние термодинамиче­ского равновесия; для него «безразлично», идет процесс в прямом или обратном на­правлении. Реальные процессы сопровож­даются диссипацией энергии (из-за тре­ния, теплопроводности и т.д.), которая нами не обсуждается. Обратимые процес­сы — это идеализация реальных процес­сов. Их рассмотрение важно по двум при-чинам: 1) многие процессы в природе и технике практически обратимы; 2) обра­тимые процессы являются наиболее эконо­мичными; имеют максимальный термиче­ский коэффициент полезного действия, что позволяет указать пути повышения к. п. д. реальных тепловых двигателœей.

§ 57. Энтропия, ее статистическое толкование и связь с термодинамической вероятностью

Понятие энтропии введено в 1865ᴦ. Р. Клаузиусом. Для выяснения физическо­го содержания этого понятия рассматри­вают отношение теплоты Q, полученной телом в изотермическом процессе, к темпе­ратуре Ттеплоотдающего тела, называе­мое приведенным количеством теплоты.

Приведенное количество теплоты, со­общаемое телу на бесконечно малом участке процесса, равно dQ/T. Строгий теоретический анализ показывает, что приведенное количество теплоты, сообща­емое телу в любом обратимом круговом процессе, равно нулю:

Из равенства нулю интеграла (57.1), взя­того по замкнутому контуру, следует, что подынтегральное выражение dQ/Tесть полный дифференциал некоторой фун­кции, которая определяется только состоя­нием системы и не зависит от пути, каким система пришла в это состояние. Таким образом,

Функция состояния, дифференциалом ко­торой является dQ/T, принято называть энтро­пиейи обозначается S.

Из формулы (57.1) следует, что для обратимых процессов изменение энтропии

DS=0. (57.3)

В термодинамике доказывается, что эн­тропия системы, совершающей необрати­мый цикл, возрастает:

DS>0. (57.4)

Выражения (57.3) и (57.4) относятся только к замкнутым системам, если же система обменивается теплотой с внешней средой, то ее энтропия может вести себя любым образом. Соотношения (57.3) и (57.4) можно представить в виде не­равенства Клаузиуса

DS³0, (57.5)

т. е. энтропия замкнутой системы может либо возрастать (в случае необратимых процессов), либо оставаться постоянной (в случае обратимых процессов).

В случае если система совершает равновесный переход из состояния 1 в состояние 2, то, согласно (57.2), изменение энтропии

где подынтегральное выражение и преде­лы интегрирования нужно выразить через величины, характеризующие исследуемый процесс. Формула (57.6) определяет эн­тропию лишь с точностью до аддитивной постоянной.Физический смысл имеет не сама энтропия, а разность энтропии.

Исходя из выражения (57.6), найдем изменение энтропии в процессах иде­ального газа. Так как dU=(m/M)Cv dT,

т. е. изменение энтропии DS1®2 идеального газа при переходе его из состояния 1 в со­стояние 2 не зависит от вида процесса перехода 1®2.

Так как для адиабатического процесса dQ = 0, то DS=0 и, следов