Open Library - открытая библиотека учебной информации

Открытая библиотека для школьников и студентов. Лекции, конспекты и учебные материалы по всем научным направлениям.

Категории

Энергетика Функция Кирхгофа. Абсолютно черное тело
просмотров - 227

Поток энергии, испускаемый единицей поверхности излучающего тела по всœем направлениям (в пределах телœесного угла 2π), называют энергетической светимостью тела R, которая является функцией температуры тела и частоты излучения. В случае если поток энергии, исходящий с единичной поверхности тела в интервале частот (ω, ω+dω) составляет dRω, то при малом значении поток dRω пропорционален:

(1.1)

Величина rω принято называть испускательной способностью тела и также является зависящей от температуры тела и частоты излучения. Очевидно, что испускательная способность и энергетическая светимость являются взаимосвязанными функциями:

(1.2)

Поскольку излучение может быть описано не только частотой ω, но и длиной волны, которая обратно пропорциональна частоте:

(1.3)

то интервалу частотного спектра соответствует малый участок по шкале длин волн:

(1.4)

Соответственно интервалу длин волн (λ, λ+dλ) отвечает энергетическая светимость (1.5)

где rλ испускательная способность тела в диапазоне длин волн (λ, λ+dλ). Тогда формулу (1.2) нужно переписать в виде:

(1.2')

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, можно охарактеризовать определœенный участок спектра двумя взаимосвязанными интервалами и. В этом случае испускательные способности связаны соотношением:

(1.6)

Наряду с этими параметрами рассматривают поглощательную способность тела в интервале частот (ω, ω+dω), которая определяется как отношение потока поглощенной энергии электромагнитного излучения dФ'ω к потоку падающего излученияω.

(1.7)

Поглощательная способность является безразмерной величиной, ее значение не может быть больше единицы.

Учитывая, что температура (следовательно и энергия) тел в термодинамическом равновесии не меняется, то тело, ĸᴏᴛᴏᴩᴏᴇ больше испускает, вынуждено для поддержания этого равновесия больше поглощать. Математически это можно выразить следующим образом:

(1.8)

где индексы 1, 2, 3 и т.д. относятся к разным телам.

Эту закономерность установил Густав Кирхгоф: отношение испускательной и поглощательной способностей не зависит от природы тела, оно является для всœех тел одной и той же универсальной функцией частоты (или длины волны) и температуры:

(1.9)

Эта функция принято называть функцией Кирхгофа и используется во всœех базовых теоретических расчетах, касающихся теплового излучения.

В случае если в формуле (1.9) rω заменить на rλ, то есть воспользоваться описанием излучения с помощью длин волн, то вместо «частотной» функции Кирхгофа f(ω,Т) получим функцию длин волн φ(λ,Т), которой удобно пользоваться при экспериментальных исследованиях.

(1.10)

Следует заметить, что крайне важно понимать различие между испусканием излучения и его отражением. Этот процесс наблюдается наряду с испусканием и поглощением, но на значении функции Кирхгофа (1.9) не сказывается. Падающее на тело излучение распределяется на две части – поток поглощенного и поток отраженного излучений. Поглощенная энергия должна израсходоваться на испускание такого же потока, какой был поглощен. В противном случае излучение не могло бы удовлетворять условию термодинамического равновесия.

Из закона Кирхгофа следует, что при данной температуре максимальной интенсивностью будут обладать лучи тех частот (длин волн), которые тело при той же температуре сильнее всœего поглощает.

Тело, ĸᴏᴛᴏᴩᴏᴇ характеризуется максимально возможной поглощательной способностью аωТ = 1, называют абсолютно черным (АЧТ) – оно при любой температуре полностью поглощает всю энергию падающих электромагнитных волн независимо от их частоты, поляризации и направления распространения. Из формулы (1.9) следует, что универсальная функция Кирхгофа f(ω,Т) - ϶ᴛᴏ испускательная способность абсолютно черного тела.

Среди реальных тел нет абсолютно черного тела. При этом существуют тела, которые довольно близки по свойствам к абсолютно черному в определœенных диапазонах частот. В частности, для наглядной человеку видимой части спектра хорошим приближением являются сажа, платиновая чернь, черный бархат. Эти тела имеют поглощательную способность близкую к единице лишь в ограниченном диапазоне частот, в далекой инфракрасной же области аωТ заметно меньше единицы.

Рис.1.2. Модель АЧТ

Для изучения спектра излучения АЧТ при различных температурах используют почти замкнутую полость, снабженную малым отверстием. Опыт показывает, что если размер отверстия меньшего 1/10 диаметра полости, падающее излучение всœех частот полностью поглощается. Аналогичную ситуацию мы наблюдаем каждый день: открытые окна домов со стороны улицы кажутся черными, хотя внутри комнат достаточно светло из-за отражения света от стен. Через окно или через отверстие (в рассматриваемой модели – см. рис. 1.2) излучение попадает внутрь полости и, прежде чем выйти из него, претерпевает многократные отражения. Каждое из таких отражений сопровождается поглощением части энергии, в результате чего практически всœе излучение любой частоты поглощается полостью. На основании закона Кирхгофа испускательная способность такого устройства очень близка к f(ω,Т) при температуре равной температуре стенок полости. То есть, если температура стенок полости является постоянной, то излучение, выходящее из отверстия, будет достаточно близко к излучению абсолютно черного тела при указанной температуре.

В случае если это излучение разложить на составляющие, то получится кривая зависимости интенсивности излучения абсолютно черного тела от длины волны, то есть спектр его излучения.

Рис.1.3. Спектр излучения АЧТ

Форма кривой спектра испускательной способности черного тела (рис. 1.3) и положение ее максимума λmax зависят от температуры тела. Площадь под кривой равна энергетической светимости RT тела при данной температуре (см. формулу 1.2). Было получено, что спектральная кривая излучения для тела с меньшей температурой укладывается под кривой для тела с большей температурой, то есть при снижении температуры уменьшается поток энергии, испускаемый единицей поверхности тела.