Open Library - открытая библиотека учебной информации

Открытая библиотека для школьников и студентов. Лекции, конспекты и учебные материалы по всем научным направлениям.

Категории

Электротехника Влияние схемы соединения обмоток на работу трехфазных трансформаторов в режиме холостого хода
просмотров - 275

Из уравнений токов третьей гармоники в трехфазной системе

(1.37)

видно, что эти токи в любой момент времени совпадают по фазе, т. е. имеют одинаковое направление. Этот же вывод распространяется на всœе высшие гармоники тока, кратные трем, — 3, 9, 15 и т. д. Это обстоятельство оказывает существенное влияние на процессы, сопровождающие намагничивание сердечников при трансформировании трехфазного тока.

Рассмотрим особенности режима холостого хода трехфазных трансформаторов для некоторых схем соединœения обмоток.

Рис. 1 .24. Направление токов третьей гармоники для различных схем соединœения обмоток

СоединœениеY/Y0. В случае если напряжение подводится со стороны обмоток, соединœенных звездой без нулевого вывода (рис. 1.24, а), то токи третьей гармоники (и кратные трем — 9, 15 и т. д.), совпадая по фазе во всœех трех фазах, будут равны нулю. Объясняется это отсутствием нулевого провода, а следовательно, отсутствием выхода из нулевой точки. В итоге токи третьей и кратные трем гармоники будут взаимно компенсироваться и намагничивающий ток трансформатора окажется синусоидальным, но магнитный поток в магнитопроводе окажется несинусоидальным (уплощенным) с явно выраженным потоком третьей гармоники Фз (рис. 1.25).

Рис. 1.25. Построение графика магнитного потока при синусоидальной форме намагничивающего тока

Потоки третьей гармоники не могут замкнуться в трехстержневом магнитопроводе, так как они совпадают по фазе, ᴛ.ᴇ. направлены встречно. Эти потоки замыкаются через воздух (масло) и металлические стенки бака (рис. 1.26). Большое магнитное сопротивление потоку Ф3 ослабляет его величину, в связи с этим наводимые потоками Ф3 в фазных обмотках ЭДС третьей гармоники невелики и обычно их амплитуда не превышает 5 — 7% от амплитуды основной гармоники. На практике поток Фз учитывают лишь с точки зрения потерь от вихревых токов, индуцируемых этим потоком в стенках бака. К примеру, при индукции в стержне магнитопровода порядка 1,4 Тл потери от вихревых токов в баке составляют около 10% от потерь в магнитопроводе, а при индукции 1,6 Тл эти потери возрастают до 50 — 65%.

Рис. 1.26. Пути замыкания магнитных потоков третьей гармоники в трехстержневом магнитопроводе

В случае трансформаторной группы, состоящей из трех однофазных трансформаторов (см. рис. 1.20, а), магнитопроводы отдельных фаз магнитно не связаны, в связи с этим магнитные потоки третьей гармоники всœех трех фаз беспрепятственно замыкаются (поток каждой фазы замыкается в своем магнитопроводе). При этом значение потока Фз может достигать 15 — 20% от Ф1 Несинусоидальный магнитный поток Ф, содержащий кроме основной гармоники Ф1 еще и третью Ф3,

(1.38)

наводит в фазных обмотках несинусоидальную ЭДС

(1.39)

Рис. 1.27. Форма графика фазной ЭДС трансформаторной группы при соединœении обмоток Y/Y

Повышенная частота Зω магнитного потока Ф3 приводит к появлению значительной ЭДС е3, резко увеличивающей амплитудное значение фазной ЭДС обмотки при том же ее действующем значении (рис.1.27), что создает неблагоприятные условия для электрической изоляции обмоток.

Рис. 1.28. Векторные диаграммы ЭДС основной (а) и третьей (б) гармоник трехфазного трансформатора

Амплитуда ЭДС третьей гармоники в трансформаторной группе может достигать 45—65% от амплитуды основной гармоники. При этом следует отметить, что линœейные ЭДС (напряжения) остаются синусоидальными и не содержат третьей гармоники, так как при соединœении обмоток звездой фазные ЭДС е3A, е3B и езс, совпадая по фазе, не создают линœейной ЭДС. Объясняется это тем, что линœейная ЭДС при соединœении обмоток звездой определяется разностью фазных ЭДС. Так, для основной гармоники (рис. 1.28, а) линœейная ЭДС

Что же касается линœейной ЭДС третьей и кратных трем гармоник, то ввиду совпадения по фазе фазных ЭДС этих гармоник (рис. 1.28, б) получим

В случае если первичная обмотка трансформатора является обмоткой НН и ее нулевой вывод присоединœен к нулевому выводу генератора (см. рис. 1.24, б), то намагничивающие токи фаз содержат третьи гармоники. Эти токи совпадают по фазе [см.(1.37)], а в связи с этим всœе они направлены либо от трансформатора к генератору, либо наоборот. В нулевом проводе будет протекать ток, равный 3iз. при этом магнитный поток трансформатора, а следовательно, и ЭДС в фазах будут синусоидальны.

Соединœения, при которых обмотки какой-либо стороны трансформатора (НН или ВН) соединœены в треугольник.Эти схемы соединœения наиболее желательны, так как они лишены недостатков рассмотренных ранее схем.

Допустим, что в треугольник соединœены первичные обмотки трансформатора. Тогда ток третьей гармоники беспрепятственно замыкается в замкнутом контуре фазных обмоток, соединœенных в треугольник (см. рис. 1.24, в). Но если намагничивающий ток содержит третью гармонику, то магнитные потоки в стержнях, а следовательно, и ЭДС в фазах практически синусоидальны.

В случае если же вторичные обмотки трансформатора соединœены в треугольник, а первичные — в звезду, то ЭДС третьей гармоники, наведенные во вторичных обмотках, создают в замкнутом контуре треугольника ток третьей гармоники. Этот ток создает в магнитопроводе магнитные потоки третьей гармоники Ф23, направленные встречно потокам третьей гармоники от намагничивающего тока Ф13 (по правилу Ленца). В итоге результирующий поток третьей гармоники значительно ослабляется и практически не влияет на свойства трансформаторов.


Читайте также


  • - Влияние схемы соединения обмоток на работу трехфазных трансформаторов в режиме холостого хода

    Из уравнений токов третьей гармоники в трехфазной системе (1.37) видно, что эти токи в любой момент времени совпадают по фазе, т. е. имеют одинаковое направление. Этот же вывод распространяется на все высшие гармоники тока, кратные трем, — 3, 9, 15 и т. д. Это обстоятельство... [читать подробенее]