Категории
Электротехника
Колебания синхронных генераторов просмотров - 744
Предположим, что синхронный генератор, подключенный на параллельную работу к сети, работает ненагруженным. Чтобы нагрузить генератор, увеличивают вращающий момент первичного двигателя до
значения , соответствующего повороту оси полюсов ротора на угол
, и электромагнитному моменту
(рис. 21.7, график 1). При этом под действием инерции вращающихся масс синхронной машины и приводного
Рис. 21.6. угловые характеристики моментов (к примеру 21.1)
двигателя ротор повернется на угол >
, при котором электромагнитный момент генератора достигает значения М’>M’1. В результате нарушившегося равновесия моментов ротор начнет поворачиваться в направлении уменьшения угла
, но силы инерции и в этом случае помешают ротору остановиться в положении, соответствующем углу
, и переведут его в положение, соответствующее значению угла
, при котором электромагнитный момент генератора
окажется меньше вращающего момента
. По этой причине ротор не остановится в положении
, а будет поворачиваться в направлении увеличения угла
.
Рис. 21.7. Колебания синхронной машины:
1- угловая характеристика;
2 – график затухающих колебаний ротор
Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, ротор синхронного генератора будет совершать колебательные движения (качания) около среднего положения ,
(рис. 21.7, график 2), соответствующего равновесию вращающего и электромагнитного моментов. В случае если бы колебания ротора не сопровождались потерями энергии, то они продолжались бы неопределенно долго, ᴛ.ᴇ. были бы незатухающими. При этом в реальных условиях колебания ротора вызывают потери энергии, из которых наибольшее значение имеют магнитные потери, обусловленные возникновением вихревых токов в сердечнике ротора. Объясняется это тем, что при отсутствии колебаний частота вращения ротора постоянна и равна частоте вращения результирующего магнитного поля. При этом при возникновении колебаний ротора частота вращения последнего становится неравномерной, т. е. происходит его движение относительно магнитного поля статора, приведет к возникновению в сердечнике ротора вихревых токов. Взаимодействие этих токов с магнитным полем статора оказывает на ротор «успокаивающее» действие, уменьшающее его колебания. Следовательно, колебания ротора имеют затухающий характер, и в связи с этим спустя неĸᴏᴛᴏᴩᴏᴇ время ротор займет положение, соответствующее углу , при котором устанавливается равновесие моментов. Причинами, вызывающими колебания ротора, бывают либо изменения вращающего момента первичного двигателя
, либо изменения нагрузки генератора, т. е. электромагнитного момента М. Колебания ротора, вызванные указанными причинами, называют собственными.
Рис. 11.8. Успокоительная (демпферная обмотка)
Возможны также вынужденные колебания, вызванные неравномерным вращением ротора, к примеру в генераторах с приводом от поршневых двигателей (дизели, газовые двигатели). Наиболее опасен случай совпадения частоты собственных колебаний с частотой вынужденных (резонанс колебаний). При этом колебания резко усиливаются, так что параллельная работа генераторов становится невозможной.
Потери энергии в металлических частях ротора оказывают тормозящее действие на подвижную часть машины и уменьшают ее колебания. При этом значительного уменьшения колебаний достигают применением в синхронной машине успокоительной (демпферной) обмотки. В явнополюсных машинах успокоительную обмотку выполняют в виде стержней, заложенных в пазы полюсных наконечников и соединенных на торцовых сторонах пластинами (рис. 21.8). В неявнополюсных машинах колебания устраняются лишь действием вихревых токов, наводимых в сердечнике ротора.
В заключение отметим, что изложенное здесь о колебаниях синхронных генераторов в равной мере относится и к синхронным двигателям (см. § 22.1).
Читайте также
Предположим, что синхронный генератор, подключенный на параллельную работу к сети, работает ненагруженным. Чтобы нагрузить генератор, увеличивают вращающий момент первичного двигателя до значения , соответствующего повороту оси полюсов ротора на угол , и... [читать подробенее]