Open Library - открытая библиотека учебной информации

Открытая библиотека для школьников и студентов. Лекции, конспекты и учебные материалы по всем научным направлениям.

Электротехника Однофазные и конденсаторные асинхронные двигатели
просмотров - 80

Использование асинхронных двигателœей, укомплектованных такими устройствами для частотного регулирования, наиболее целœесообразно в пожаро- и взрывоопасных средах (химическая и нефтеперерабатывающая промышленность), где применение коллекторных двигателœей (см. гл. 29) недопустимо.

Регулирование частоты вращения изменением числа полюсов обмотки статора. Этот способ регулирования частоты вращения дает ступенчатую регулировку. Так, при f1 =50 Гц и р = 1÷5 пар полюсов можно получить следующие синхронные частоты вращения: 3000, 1500, 1000, 750, 600 об/мин.

Изменять число полюсов в обмотке статора можно либо укладкой на статоре двух обмоток с разным числом полюсов, либо укладкой на статоре одной обмотки, конструкция которой позволяет путем переключения катушечных групп получать различное число полюсов. Последний способ получил наибольшее применение.

Принцип преобразования четырехполюсной обмотки в двух­полюсную (для одной фазы) показан на рис. 15.12: при последова­тельном согласном соединœении двух катушек возбуждаемое ими магнитное поле образует четыре полюса (рис. 15.12, а); при по­следовательном встречном (рис. 15.12, б) или параллельном со­единœениях (рис. 15.12, в) — два полюса. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, принцип образования полюсно переключаемой обмотки основан на том, что каждая фаза обмотки делится на части (катушечные группы), из­меняя

Рис 15.12. Схемы включения обмотки статора

на разное число полюсов

схему соединœения которых получают разное число полюсов.

Возможны два режима работы асинхронных двигателœей с по­люсно переключаемыми обмотками:

режим постоянного момента (рис. 15.13, а) — при переключении двигателя с одной частоты вращения на другую вращающий момент на валу двигателя М2 остается неизменным, а мощность Р2 изменяется пропорционально частоте вращения n2:

Рис. 15.13. Схемы переключения числа полюсов и механиче­ские характеристики в режимах постоянного момента (а) и постоянной скорости (б)

Р2 = 0,105 М2 n2 (15.7)

режим постоянной мощности (рис. 15.13, б) — при переключении двигателя с одной частоты вращения на другую мощность P2 остается примерно одинаковой, а момент на валу M2 изменяется соответственно изменению частоты вращения n2:

М2 = 9,55 Р2/ n2. (15.8)

В случае если на статоре расположить две полюсно переключаемые обмотки, то получим четырехскоростной двигатель. При этом воз­можно применение и одной обмотки, допускающей путем пере­ключения катушечных групп получение до четырех вариантов различных чисел полюсов. К примеру, асинхронный двигатель ти­па 4А180М12/8/6/4 имеет на статоре обмотку, допускающую пере­ключение на 12,8,6,4 полюса.

Регулирование частоты вращения изменением числа полюсов на статоре применяют исключительно в асинхронных двигателях с короткозамкнутым ротором, так как число полюсов в обмотке этого ротора всœегда равно числу полюсов статора и для изменения частоты вращения достаточно изменить число полюсов в обмотке ротора. В случае же фазного ротора пришлось бы и на роторе применить полюсно переключаемую обмотку, что привело бы к недопустимому усложнению двигателя.

Контрольные вопросы

1. Какими показателями характеризуются пусковые свойства асинхронных дви­гателœей? 2. Каковы достоинства и недостатки пусковых свойств асинхронных двигателœей?

3. Как лучше, с точки зрения улучшения пусковых свойств, уменьшить пуско­вой ток: снижением подводимого к двигателю напряжения или увеличением активного сопротивления в цепи обмотки ротора?

4. Каковы достоинства и недостатки пуска асинхронных двигателœей непосред­ственным включением в сеть?

5. Какие существуют способы пуска асинхронных двигателœей при пониженном напряжении?

6. В чем сущность эффекта вытеснения тока и почему он возникает при пуске двигателя и почти исчезает при его работе?

7. Почему бутылочная форма паза ротора способствует лучшему проявлению эффекта вытеснения тока?

8. Перечислите способы регулирования частоты вращения асинхронных двига­телœей и дайте им сравнительную оценку.

9. Почему при частотном регулировании частоты вращения одновременно с частотой тока крайне важно изменять напряжение?

ГЛАВА 16

§16.1. Принцип действия и пуск однофазного асинхронного двигателя

По своему устройству однофазный асинхронный двигатель аналогичен трехфазному и состоит из ста­тора, в пазах которого уложена однофазная обмотка (см. рис. 8.8), и короткозамкнутого ротора. Особен­ность работы однофазного асинхронного двигателя состоит по сути в том, что при включении однофазной обмотки статора С1—С2 в сеть (рис. 16.1) МДС ста­тора создает не вращающийся, а пульсирующий маг­нитный поток (см. § 9.4) с амплитудой Фmах, изме­няющейся от + Фmах до – Фmах При этом ось магнитного потока остается неподвижной в про­странстве.

Для объяснения принципа действия однофаз­ного двигателя пульсирующий поток Фmах разло­жим на два вращающихся в противоположные стороны потока Фпр и Фобр (рис. 16.2), каждый из которых равен 0,5Фmax и вращается с частотой (об/мин)

nпр = nобр = f160/ p = n1

Условимся считать поток Фпр вращающийся в на­правлении вращения ротора, прямым, а поток Фо6р -обратным. Допустим, что ротор двигателя вращает­ся против часовой стрелки, т. е. в направлении пото­ка Фпр.

Частота вращения ротора n2 меньше частоты вращения магнитного поля статора n1, в связи с этим скольжение ротора относительно вращающегося по­тока Фпр будет

sпр = (n1 – n2)/ n1 = s (16.1)

Обратный поток Фобр вращается противополож­но ротору, в связи с этим частота вращения ротора n2 от­носительно Фобр - отрицательная. В этом случае скольжение ротора относительно Фобр определится выражением

sобр = (16.2)

Прямое поле наводит в обмотке ротора ЭДС Е2пр, а обратное по­ле — ЭДС Е2обр. Эти ЭДС создают в обмотке ротора токи I/2пр и I/2обр.

Известно, что частота тока в роторе пропор­циональна скольжению (f2 = sf1). Так как snp < sобр, то частота тока I/2обр намного больше частоты тока I/2пр. Так, для однофазного двигателя с n1 = 1500 об/мин, n2 = 1450 об/мин и f1 = 50 Гц получим:

snp = (1500 - 1450)/ 1500 = 0,033;

f2пр = 0,033 - 50 = 1,8 Гц;

sобр = (1500 +1450)/ 1500 = 1,96;

f2о6р = 1,96 - 50 = 98 Гц.

Рис.16.1 Схема включения однофазного

асинхронного двигателя

Индуктивное сопротивление обмотки ротора току I/2обр во много раз больше ее активного сопротивления (потому что f2обр >> f2пр). Ток I/2о6р являет­ся почти чисто индуктивным, оказывающим силь­ное размагничивающее действие на обратное поле Фобр. В результате обратное поле и обусловленный им момент Мобр оказываются зна­чительно ослабленными и ротор однофазного двигателя вращается и направлении прямого поля под действием момента

М = Мпр - М06р, (16.3)

где Мпр — электромагнитный момент, обусловленный прямым полем.

Рис. 16.2. Разложение пульсирующего магнитного потока на два вра­щающихся

На рис. 16.3 представлен график зависимости вращающего момента М в функции скольжения s = sпр. Этот график получен путем наложения графиков Мпр = f(snp) и Мо6р = f(sобр)- При малых значениях скольжения s, что соответствует работе двигателя в пределах номинальной нагрузки, вращающий момент Мсоздается главным образом моментом Мпр.

При sпр = sобр = 1 моменты Мпр и Мо6р равны, а в связи с этим пуско­вой момент однофазного двигателя равен нулю. Следовательно, однофазный асинхронный двигатель не может самостоятельно прийти во вращение при подключении его к сети, а нуждается в первоначальном толчке, так как лишь при s≠ 1 на ротор двигателя действует вращающий момент М = Мпр- Мобр

Рис. 16.3. Механические характе- Рис. 16.4. Схема однофазного ристики однофазного асинхронного асинхронного двигателя с пусковой двигателя обмоткой

Приведенные на рис. 16.3 зависимости моментов показывают, что однофазный асинхронный двигатель не создает пускового мо­мента. Чтобы данный момент появился, крайне важно во время пуска двигателя создать в нем вращающееся магнитное поле. С этой целью на статоре двигателя помимо рабочей обмотки Априменяют еще одну обмотку — пусковую В. Эти обмотки располагают на статоре обычно так, чтобы их оси были смещены относительно друг друга на 90 эл. град. Вместе с тем, токи в обмот­ках статора и должны быть сдвинуты по фазе относительно друг друга. Для этого в цепь пусковой обмотки включают фазосмещающий элемент (ФЭ), в качестве которого бывают применены активное сопротивление, индуктивность или ем кость (рис. 16.4). По достижении частотой вращения значения близкого к номинальному, пусковую обмотку Вотключают с по мощью релœе. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, во время пуска двигатель является двухфазным, а во время работы — однофазным.

Для получения вращающегося магнитного поля посредством двух обмоток на статоре, смещенных относительно друг друга на 90 эл. град, крайне важно соблюдать следующие условия (рис. 16.5):

а) МДС рабочей и пусковой обмоток и должны быть и равны и сдвинуты в пространстве относительно друг друга на 90 эл. град;

б) токи в обмотках статора и должны быть сдвинуты по фазе относительно друг друга на 90°.

При строгом соблюдении указанных условий вращающееся поле статора является круговым, что соответствует наибольшему вращающему моменту. При частичном нарушении какого-либо из условий поле статора становится эллиптическим, содержащим об­ратную составляющую (см. рис. 9.5, б). Обратная составляющая поля создает тормоз­ной момент и ухудшает пусковые свой­ства двигателя.

Из векторных диа­грамм, приведенных на рис. 16.6, видно, что активное сопротивле­ние и индуктивность в качестве ФЭ не обес­печивают получения фазового сдвига между токами в 90°. Лишь только емкость С в качестве ФЭ обеспе­чивает фазовый сдвиг ψ = 90°. Значение этой емкости выбирают та­ким, чтобы ток пусковой обмотки в мо­мент пуска (s = 1) опережал по фазе напря­жение , на угол φв, дополняющий угол φА до 90°:

Рис. 16.5. Получение вращающегося магнитного

поля двухфазной системой токов

В случае если при этом обе обмотки создают одинаковые по значению МДС, то в начальный период пуска вращающееся поле окажется круговым и двигатель будет развивать значительный начальный пусковой момент. При этом применение емкости в качестве ФЭ часто ограничивается значительными габаритами конденсаторов, тем более что для получения кругового поля требуются конденсаторы значительной емкости. К примеру, для однофазного двигателя мощностью 200 Вт необходима емкость 30 мкФ при рабочем на­пряжении 300—500 В.

Получили распространение однофазные двигатели с активным сопротивлением в качестве ФЭ. При этом повышенное активное сопротивление пусковой обмотки достигается тем, что она выполняется проводом уменьшенного сечения (по сравнению с проводом рабочей обмотки). Так как эта обмотка включена на непро­должительное время (обычно несколько секунд), то такая ее кон­струкция вполне допустима. Пусковой момент таких двигателœей обычно не превышает номинального, но это вполне приемлемо при пуске двигателœей при небольшой нагрузке на валу.

Рис. 16.6. Сравнение свойств фазосмещающих элементов:

а— активное сопротивление, б— индуктивность, в— емкость, г— механиче­ские характеристики двигателя при различных фазосмещающих элементах; 1активное сопротивление; 2— емкость

Применение емкости в качестве ФЭ позволяет получить пус­ковой момент Мп= (1,6÷2,0) Мном. На рис. 16.6, г приведены меха­нические характеристики однофазного асинхронного двигателя при различных ФЭ. Для большей наглядности значения момента даны в относительных единицах.


Читайте также


  • - Однофазные и конденсаторные асинхронные двигатели

    Использование асинхронных двигателей, укомплектованных такими устройствами для частотного регулирования, наиболее целесообразно в пожаро- и взрывоопасных средах (химическая и нефтеперерабатывающая промышленность), где применение коллекторных двигателей (см. гл. 29)... [читать подробенее]