Категории
- Астрономия
- Биология
- Биотехнологии
- География
- Государство
- Демография
- Журналистика и СМИ
- История
- Лингвистика
- Литература
- Маркетинг
- Менеджмент
- Механика
- Науковедение
- Образование
- Охрана труда
- Педагогика
- Политика
- Право
- Психология
- Социология
- Физика
- Химия
- Экология
- Электроника
- Электротехника
- Энергетика
- Юриспруденция
- Этика и деловое общение
Электротехника
Векторная диаграмма трансформатора просмотров - 506
Уравнение магнитного состояния
Уравнение электрического состояния трансформатора
Согласно второму закону Кирхгофа, напряжение u1, приложенное к первичной цепи уравновешивается противо ЭДС рабочего магнитного потока первичной обмотки- e1, ЭДС рассеяния - и падением напряжения в проводах.
(5.4)
Для вторичной цепи - напряжение на нагрузке u2 немного меньше ЭДС е2 вследствие влияния ЭДС рассеяния и падения напряжения в проводниках вторичной обмотки.
(5.5)
Следует отметить, что ЭДС рассеяния обмоток ер1, и ер2, а так же падение напряжения i1r1 и i2r2 в десятки раз меньше по величине чем соответствующее ЭДС рабочего магнитного потока е1 и е2. По этой причине часто можно считать U1≈ - E1 и U2≈ E2.
Будем считать рабочий магнитный поток Ф синусоидально изменяющемся во времени Ф = Фmax sinωt, тогда
(5.6)
(5.7)
Как видно, э.д.с. e1 и e2 отстают по фазе от магнитного потока на . Разделив и на и учитывая, что получим
(5.8)
(5.9)
Для комплексов действующих значений уравнения электрического состояния трансформатора.
Здесь - индуктивное сопротивление рассеяния первичной и вторичной обмоток.
Магнитный поток Ф = Фmax sinωt определяет величину напряженности поля H(t) в сердечнике в любой момент времени, т.к. эти две величины связаны между собой параметрической зависимостью Ф(H), выражаемую графически петлей гистерезиса. Но напряженность магнитного поля связана с намагничивающими силами первичной , и вторичной обмоток законом полного тока/
где l - длина средней линии сердечника. Значит, сумма намагничивающих сил в любой момент времени должна иметь определенное значение, независимо от величины и характера нагрузки. При холостом ходе (вторичная цепь разомкнута)
Стало быть - это и есть уравнение намагничивающих сил трансформатора.
Разделим это уравнение на w1 и перенесем в левую часть равенства , получим
ᴛ.ᴇ. ток первичной обмотки имеет две составляющие:
- создает магнитный поток сердечника,
. Таким образом магнитный поток в сердечнике при любом режиме работы трансформатора остается неизменным.
При построении векторной диаграммы воспользуемся уравнением электрического и магнитного состояния трансформатора
где
где
и складываем вектора т.к.
Активные и индуктивные потери мощности во вторичной обмотке.
Уравнения электрического и магнитного состояния приведенного трансформатора имеют вид:
Схема замещения реального трансформатора приведена на рис. 5.3
Рис. 5.3
Схема замещения состоит из трех ветвей: первая - моделирует первичную цепь трансформатора; вторая -соответственно вторичную, третья - намагничивающая цепь трансформатора, здесь
-моделирует потери энергии в сердечнике на гистерезис и вихревые токи.
- сопротивление индуктивности, создающей рабочий магнитный поток. Параметры схемы замещения бывают найдены из опытов холостого хода и короткого замыкания.
Читайте также
Цель лекции: -ознакомить студентов с принципом построения векторной диаграммы трансформаторов. Содержание лекции: - режим холостого хода; -векторная диаграмма трансформатора при холостом ходе. Основной магнитный поток в магнитопроводе трансформатора индуктирует в... [читать подробенее]
Сопротивление нагрузки трансформатора носит индуктивный характер. Векторная диаграмма трансформатора представлена на рис. 30.5. При построении за основу принята векторная диаграмма трансформатора в режиме холостого хода. Эквивалентная схема трансформатора... [читать подробенее]
Уравнение магнитного состояния Уравнение электрического состояния трансформатора Согласно второму закону Кирхгофа, напряжение u1, приложенное к первичной цепи уравновешивается противо ЭДС рабочего магнитного потока первичной обмотки- e1, ЭДС рассеяния - и... [читать подробенее]
N УРАВНЕНИЯ ЭДС, МДС и ТОКОВ ТРАНСФОРМАТОРА. Из постоянства амплитуды потока Фm, следует постоянство МДС: w11 – w22 = w10. Это равенство справедливо и для мгновенных значений: w1i1 – w2i2 = w1i0. Разделив правую и левую части уравнения на w1, получаем уравнение токов: 1 = 0 + &... [читать подробенее]
Основной магнитный поток в магнитопроводе трансформатора индуктирует в первичной и во вторичной обмотках ЭДС Е1 и Е2. Помимо основного магнитного потока существует поток рассеяния первичной обмотки Фs1. Так как при холостом ходе во вторичной обмотке тока нет, то эта... [читать подробенее]
После приведения вторичной обмотки трансформатора квиткам первичной мы можем перейти к построению векторной диаграммы. На рисунке показана векторная диаграмма для активно-индуктивной (рис. 1.10, а) и для активно-емкостной (рис. 1.10, б) нагрузок. Для построения векторных... [читать подробенее]
Векторная диаграмма трансформатора при коротком замыкании представлена на рис. 1.13. Для построения векторной диаграммы запишем основные уравнения ЭДС и токов: 1) (1.33) 2) 3) 4) 5) Рис. 1.13. Векторная диаграмма трансформатора при коротком замыкании 1.6.2 Схема замещения... [читать подробенее]
В режиме ХХ строится на основании уравнения (Рис.а) . При нагрузке, например, активно-индуктивной ток во вторичной обмотке отстает на угол Y2 от E2. Напряжение во вторичной обмотке строится по уравнению: , а ток первичной обмотки: . (Рис.б) а) б) Из векторной диаграммы и... [читать подробенее]
Основной магнитный поток в магнитопроводе трансформатора индуктирует в первичной и во вторичной обмотках ЭДС Е1 и Е2. Помимо основного магнитного потока существует поток рассеяния первичной обмотки Фs1. Так как при холостом ходе во вторичной обмотке тока нет, то эта... [читать подробенее]
После приведения вторичной обмотки трансформатора квиткам первичной мы можем перейти к построению векторной диаграммы. На рисунке показана векторная диаграмма для активно-индуктивной (рис. 1.10, а) и для активно-емкостной (рис. 1.10, б) нагрузок. Для построения векторных... [читать подробенее]