Open Library - открытая библиотека учебной информации

Открытая библиотека для школьников и студентов. Лекции, конспекты и учебные материалы по всем научным направлениям.

Электроника Анализ схемы на устойчивость по критерию Михайлова
просмотров - 135

Для анализа устойчивости рассматривается знаменатель схемной функции B(jω), который получается из полинома (19) заменой p на jω:

(20)

где можно выделить вещественную и мнимую часть, а также амплитуду и фазу:

Для конкретного численного значения ω = ωi имеем комплексное число B(jωi), ĸᴏᴛᴏᴩᴏᴇ можно изобразить на плоскости в виде вектора, соединяющего начало координат с точкой (Re Bi); j Im Bi)). При изменении ω от 0 до ∞ конец вектора B(jω) выписывает на комплексной плоскости некоторую кривую, которую называют годографом Михайлова. При этом годограф начинается, как следует из выражения (20), в точке с координатами (b0; j0).

Критерий устойчивости Гурвица формулируется следующим образом: для устойчивости системы крайне важно и достаточно, чтобы годограф Михайлова при изменении ω от 0 до ∞ начинался на положительном конце вещественной оси в точке b0 и проходил последовательно против часовой стрелки n квадрантов, не обращаясь в ноль и стремясь к ∞ в n-ом квадранте.

В устойчивой системе каждый из n корней даст приращение фазы φi = + π/2, а общий угол поворота B(jω) равен + (π/2)n. Вид годографа Михайлова для устойчивой и неустойчивых схем третьего порядка (ᴛ.ᴇ. у которых знаменатель схемной функции B(p) является полином 3-ей степени) приведен на рис. 15.

Оценим устойчивость схемы на рис. 12 по критерию Михайлова. Полином знаменателя схемной функции имеет вид

B(p) = pCg3 + g2g3.

Рис. 15. Примеры годографа Михайлова для устойчивой (а) и неустойчивых (б) систем третьего порядка (n = 3)

Заменив p на jω, получим выражение для годографа Михайлова

B(jω) = jωCg3 + g2g3,

в котором Re B(ω) = g2g3 = 1·10-7 См2; Im B(ω) = ωCg3 = 1·10-10 Ф·См.

Для построения годографа Михайлова вычислим значения вещественной и мнимой частей при конкретных значениях частоты и занесем их в таблицу.

Таблица. Координаты точек для построения годографа Михайлова

ω
Re B(ω) 1·10-7 1·10-7 1·10-7 1·10-7 1·10-7
Im B(ω) 1·10-10 1·10-9 1·10-8

Вид годографа Михайлова для схемы на рис. 12 представлен на рис. 16.

Рис. 16. Годограф Михайлова для схемы на рис. 12

Поскольку годограф начинается на положительном конце реальной оси, попадает в первый квадрант и стремится к ∞ в первом квадранте (у нас n = 1), схема является устойчивой. Данный вывод совпадает с результатами анализа схемы по критерию устойчивости Гурвица.


Читайте также


  • - Анализ схемы на устойчивость по критерию Михайлова

    Для анализа устойчивости рассматривается знаменатель схемной функции B(j&... [читать подробенее]


  • - Анализ схемы на устойчивость по критерию Михайлова

    Для анализа устойчивости рассматривается знаменатель схемной функции B(j&... [читать подробенее]