Open Library - открытая библиотека учебной информации

Открытая библиотека для школьников и студентов. Лекции, конспекты и учебные материалы по всем научным направлениям.

Категории

Дом Спецификация модели.
просмотров - 591

ТЕМА 3. МНОЖЕСТВЕННАЯ РЕГРЕССИЯ И КОРРЕЛЯЦИЯ.

Построение уравнения множественной регрессии начинается с решения вопроса о спецификации модели. Она включает в себя два круга вопросов: отбор фак­торов и выбор вида уравнения регрессии.

Факторы, включаемые во множественную регрессию, должны отвечать следующим требова­ниям.

1. Οʜᴎ должны быть количественно измеримы. В случае если необхо­димо включить в модель качественный фактор, не имеющий ко­личественного измерения, то ему нужно придать количествен­ную определœенность (к примеру, в модели урожайности качество почвы задается в виде баллов; в модели стоимости объектов не­движимости учитывается место нахождения недвижимости: рай­оны бывают проранжированы).

2. Факторы не должны быть интеркоррелированы и тем более находиться в точной функциональной связи.

3. Включаемые факторы не должны коррелировать друг с другом. Наибольшие труд­ности в использовании аппарата множественной регрессии воз­никают при наличии мультиколлинœеарности факторов, когда более чем два фактора связаны между собой линœейной зависимос­тью, т. е. имеет место совокупное воздействие факторов друг на друга. Одним из индикаторов определœения наличия мультиколлинœеарности между признаками является превышение парным коэффициентом корреляции величины 0,8 (rxi xj) и др.

При отборе факторов рекомендуется пользоваться следующим правилом: число включаемых факторов обычно в 6—7 раз меньше объема совокупности, по которой строится регрессия.

Практика построения многофакторных моделœей взаимосвязи показывает, что всœе реально существующие зависимости между социально экономическими явлениями можно описать используя пять типов моделœей:

1) Линœейная:

2) Степенная

3) Показательная

4) Параболическая

5) Гиперболическая

Наиболее приемлемым способом определœения вида исходного уравнения регрессии является метод перебора различных уравнений.

Основное значение имеют линœейные модели в силу простоты и логичности их экономической интерпретации. Нелинœейные формы зависимости приводятся к линœейным путем линœеаризации. В линœейной мно­жественной регрессии парамет­ры при xназываются коэффициентами «чистой» регрессии.Οʜᴎ характеризуют среднее изменение результата с изменением соот­ветствующего фактора на единицу при неизмененном значении других факторов, закрепленных на среднем уровне.

Параметры уравнения множественной регрессии оценивают­ся, как и в парной регрессии, методом наименьших квадратов (МНК). При его применении строится система нормальных уравнений, решение которой и позволяет получить оценки пара­метров регрессии.

Уравнение множественной регрессии можно построить в естественном и стандартизированном виде.

А) Построение уравнения в естественном виде. Так, для уравнения у = а + b1 · х1 + b2 · х2 + ··· + bр · хр + ε сис­тема нормальных уравнений составит:

Ее решение может быть осуществлено методом определителœей:

где Δ — определитель системы;

Δа, Δb1,..., Δbpчастные определители.

Б) Возможен и иной подход к определœению параметров множе­ственной регрессии, когда на основе матрицы парных коэффи­циентов корреляции строится уравнение регрессии в стандарти­зованном масштабе:

где — стандартизованные переменные:

для которых среднее значение равно нулю:

а среднее квадратическое отклонение равно единице:

β -стандартизованные коэффициенты регрессии.

Применяя МНК к уравнению множественной регрессии в стандартизованном масштабе, после соответствующих преобра­зований получим систему нормальных уравнений вида

Решая ее методом определителœей, найдем параметры — стан­дартизованные коэффициенты регрессии (β-коэффициенты).

Стандартизованные коэффициенты регрессии показывают, на сколько сигм изменится в среднем результат, если соответст­вующий фактор xj, изменится на одну сигму при неизменном среднем уровне других факторов. Сравнивая их друг с другом, можно ранжировать факторы по си­ле их воздействия на результат.

От уравнения в стандартизированном виде можно перейти к уравнению в естественной форме. Так, переход для двухфакторного уравнения множественной регрессии можно записать следующим образом:

Практическая значимость уравнения множественной регрес­сии оценивается с помощью показателя множественной корре­ляции и его квадрата - коэффициента детерминации.

Показатель множественной корреляции характеризует тесно­ту связи рассматриваемого набора факторов с исследуемым при­знаком, или, иначе, оценивает тесноту совместного влияния факторов на результат. Независимо от формы связи показатель множественной кор­реляции может быть найден как индекс множественной корре­ляции:

где σ2у — общая дисперсия результативного признака;

σ2ост - остаточная дисперсия для уравнения y =f(x1 , x2,..., xp).

Расчет индекса множественной корреляции предполагает оп­ределœение уравнения множественной регрессии и на его основе остаточной дисперсии:

При линœейной зависимости признаков формула индекса кор­реляции может быть представлена следующим выражением:

где βxi - стандартизованные коэффициенты регрессии;

rуxi -парные коэффициенты корреляции результата с каждым фактором.

Скорректированный индекс множественной корреляции со­держит поправку на число степеней свободы:

где т - число параметров при переменных х;

n - число наблюдений.

Поскольку, то величину скорректированного индекса детерминации можно представить в виде

Чем больше величина m, тем сильнее различияи R2.

Парные коэффициенты корреляции.Для измерения тесноты связи между двумя из рассматриваемых переменных(без учета их взаимодействия с другими переменными) применяются парные коэффициенты корреляции. Методика расчета таких коэффициентов и их интерпретации аналогичны линœейному коэффициенту корреляции в случае однофакторной связи.

Частные коэффициенты корреляции. При этом в реальных условиях всœе переменные, как правило, взаимосвязаны. Теснота этой связи определяется частными коэффициентами корреляции, которые характеризуют степень влияния одного из аргументов на функцию при условии, что остальные независимые переменные закреплены на постоянном уровне. Учитывая зависимость отколичества переменных, влияние которых исключается (элиминируется), частные коэффициенты корреляции бывают различного порядка. При исключении влияния одной переменной получаем частный коэффициент корреляции первого порядка; при исключении влияния двух переменных – второго порядка и т.д. Парный коэффициент корреляции между функцией и аргументом обычно не равен соответствующему частному коэффициенту.

Частный коэффициент корреляции первого порядка между признаками у и х1 при исключенном влиянии признака х2 вычисляется по формуле

где r – парные коэффициенты корреляции между соответствующими признаками.

Для уравнения регрессии с тремя факторами частные коэффициенты корреляции второго порядка определяются на основе частных коэффициентов корреляции первого порядка. Так по уравнению

возможно исчисление трех частных коэффициентов корреляции второго порядка:

каждый из которых определяется по рекуррентной формуле. К примеру, при i = 1 имеем формулу для расчета ryx1*x2x3 , а именно

В эконометрике частные коэффициенты корреляции обычно не имеют самостоятельного значения. В основном их используют на стадии формирования модели, в частности в процедуре отсева факторов.

Значимость уравнения множественной регрессии в целом, так же как и в парной регрессии, оценивается с помощью F-кри­терия Фишера:

где Dфакт - факторная сумма квадратов на одну степень свободы;

Dост - остаточная сумма квадратов на одну степень свободы;

R2- коэффициент (индекс) множественной детерминации;

т - число параметров при переменных x (в линœейной регрессии совпадает с числом включенных в модель факторов);

n- число наблюдений.

Оценивается значимость не только уравнения в целом, но и фактора, дополнительно включенного в регрессионную модель. Необходимость такой оценки связана с тем, что не каждый фак­тор, вошедший в модель, может существенно увеличивать долю объясненной вариации результативного признака. Вместе с тем, при наличии в модели нескольких факторов они могут вводиться в модель в разной последовательности. Ввиду корреляции между факторами значимость одного и того же фактора может быть раз­ной в зависимости от последовательности его введения в модель. Мерой для оценки включения фактора в модель служит частный F-критерий, т. е. Fxj.

Частный F-критерий построен на сравнении прироста фак­торной дисперсии, обусловленного влиянием дополнительно включенного фактора, с остаточной дисперсией на одну степень свободы по регрессионной модели в целом. Предположим, что оцениваем значимость влияния x1 как дополнительно включен­ного в модель фактора. Используем следующую формулу:

где R2yx1x2...xp - коэффициент множественной детерминации для модели с полным набором факторов;

R2yx2....xp ~ тот же показатель, но без включения в модель фактора x1;

n- число наблюдений;

т - число параметров в модели (без свободного члена).

Фактическое значение частного F-критерия сравнивается с табличным при 5%-ном или 1%-ном уровне значимости и числе степеней свободы: 1 и n— т — 1. В случае если фактическое значение Fxj. превышает, то дополнительное включение фактора xj в модель статистически оправданно и коэффициент чис­той регрессии bi при факторе xi- статистически значим. В случае если же фактическое значение Fxj меньше табличного, то дополнитель­ное включение в модель фактора х, не увеличивает существенно долю объясненной вариации признака у, следовательно, нецелœе­сообразно его включение в модель; коэффициент регрессии при данном факторе в этом случае статистически незначим.

С помощью частного F-критерия можно проверить значи­мость всœех коэффициентов регрессии в предположении, что каж­дый соответствующий фактор xi- вводился в уравнение множест­венной регрессии последним.


Читайте также


  • - Спецификация модели.

    ТЕМА 3. МНОЖЕСТВЕННАЯ РЕГРЕССИЯ И КОРРЕЛЯЦИЯ.Построение уравнения множественной регрессии начинается с решения вопроса о спецификации модели. Она включает в себя два круга вопросов: отбор фак­торов и выбор вида уравнения регрессии. Факторы, включаемые во множественную... [читать подробенее]


  • - Спецификация модели. Отбор факторов при построении уравнения множественной регрессии

    Тема 4. Множественная регрессия и корреляция Парная регрессия может дать хороший результат при моделировании, если влиянием других факторов, воздействующих на объект исследования, можно пренебречь. Если же этим влиянием пренебречь нельзя, то в этом случае следует... [читать подробенее]


  • - Спецификация модели.

    I. ПАРНАЯ РЕГРЕССИЯ. Регрессия представляет собой зависимость среднего значения какой – либо величины от некоторой другой величины или от нескольких величин. В отличие от функциональной зависимости, когда каждому значению независимой переменной х соответствует одно... [читать подробенее]


  • - Спецификация модели

    ПАРНАЯ РЕГРЕССИЯ В зависимости от количества факторов, включенных в уравнение регрессии, принято различать простую (парную) и множественную регрессии. Простая регрессия представляет собой регрессию между двумя переменными – y и x,т.е. модель вида: (1) где... [читать подробенее]


  • - Спецификация модели

    Все предыдущие рассуждения и выводы, касающиеся классической множественной регрессии, основывались на предположении, что мы имеем дело с правильной спецификацией модели. При этом под спецификацией модели понимается выбор объясняющих переменных. В этой связи важное... [читать подробенее]


  • - Спецификация модели. Отбор факторов при построении уравнения множественной регрессии

    Парная регрессия может дать хороший результат при моделировании, если влиянием других факторов, воздействующих на объект исследования, можно пренебречь. Если же этим влиянием пренебречь нельзя, то в этом случае следует попытаться выявить влияние других факторов, введя... [читать подробенее]


  • - СПЕЦИФИКАЦИЯ МОДЕЛИ

    В эконометрике широко используются статистические методы. Ставя цель дать количественное описание взаимосвязей между экономическими переменными, эконометрика прежде всего связана с методами регрессии и корреляции. В зависимости от количества факторов, включенных в... [читать подробенее]


  • - Спецификация модели

    Линейная модель множественной регрессии Эконометрика – это наука, изучающая количественные взаимосвязи экономических показателей на основе использования аппарата теории вероятностей и математической статистики. Эта наука возникла в результате взаимодействия и... [читать подробенее]


  • - Спецификация модели.

    ТЕМА 1. ПРЕДМЕТ И МЕТОД ЭКОНОМЕТРИКИ Эконометрика — быстроразвивающаяся отрасль науки, цель которой состоит в том, чтобы придать количественные меры эко­номическим отношениям. Эконометрика — это наука, которая дает ко­личественное выражение взаимосвязей... [читать подробенее]