Open Library - открытая библиотека учебной информации

Открытая библиотека для школьников и студентов. Лекции, конспекты и учебные материалы по всем научным направлениям.

Категории

Биотехнологии The basic characteristics of sewage. Household, industrial and agricultural flows, their structure and criteria of quality assessment.
просмотров - 194

Lectures 2-3

Sewage is water-carried waste, in solution or suspension, that is intended to be removed from a community. Also known as wastewater, it is more than 99% water and is characterized by volume or rate of flow, physical condition, chemical constituents and the bacteriological organisms that it contains. In loose American English usage, the terms 'sewage' and 'sewerage' are sometimes interchanged. Both words are descended from Old French assewer, derived from the Latin exaquare, "to drain out (water)".

Classes of sewage include sanitary, commercial, industrial, agricultural and surface runoff. The wastewater from residences and institutions, carrying body wastes, washing water, food preparation wastes, laundry wastes, and other waste products of normal living, are classed as domestic or sanitary sewage. Liquid-carried wastes from stores and service establishments serving the immediate community, termed commercial wastes, are included in the sanitary or domestic sewage category if their characteristics are similar to household flows. Wastes that result from an industrial process or the production or manufacture of goods are classed as industrial wastewater. Their flows and strengths are usually more varied, intense, and concentrated than those of sanitary sewage. Surface runoff, also known as storm flow or overland flow, is that portion of precipitation that runs rapidly over the ground surface to a defined channel. Precipitation absorbs gases and particulates from the atmosphere, dissolves and leaches materials from vegetation and soil, suspends matter from the land, washes spills and debris from urban streets and highways, and carries all these pollutants as wastes in its flow to a collection point

All categories of sewage are likely to carry pathogenic organisms that can transmit disease to humans and other animals; contain organic matter that can cause odor and nuisance problems; hold nutrients that may cause eutrophication of receiving water bodies; and can lead to ecotoxicity. Proper collection and safe, nuisance-free disposal of the liquid wastes of a community are legally recognized as a necessity in an urbanized, industrialized society.The reality is, however, that around 90% of wastewater produced globally remains untreated, causing widespread water pollution, especially in low-income countries.

Increasingly, agriculture is using untreated wastewater for irrigation. Cities provide lucrative markets for fresh produce, so are attractive to farmers. However, because agriculture has to compete for increasingly scarce water resources with industry and municipal users, there is often no alternative for farmers but to use water polluted with urban waste, including sewage, directly to water their crops. There can be significant health hazards related to using water loaded with pathogens in this way, especially if people eat raw vegetables that have been irrigated with the polluted water.

The International Water Management Institute has worked in India, Pakistan, Vietnam, Ghana, Ethiopia, Mexico and other countries on various projects aimed at assessing and reducing risks of wastewater irrigation. They advocate a ‘multiple-barrier’ approach to wastewater use, where farmers are encouraged to adopt various risk-reducing behaviours. These include ceasing irrigation a few days before harvesting to allow pathogens to die off in the sunlight, applying water carefully so it does not contaminate leaves likely to be eaten raw, cleaning vegetables with disinfectant or allowing fecal sludge used in farming to dry before being used as a human manure. The World Health Organization has developed guidelines for safe water use.

Sewage treatment is the process of removing contaminants from wastewater and household sewage, both runoff (effluents) and domestic. It includes physical, chemical, and biological processes to remove physical, chemical and biological contaminants. Its objective is to produce an environmentally safe fluid waste stream (or treated effluent) and a solid waste (or treated sludge) suitable for disposal or reuse (usually as farm fertilizer). Using advanced technology it is now possible to re-use sewage effluent for drinking water, although Singapore is the only country to implement such technology on a production scale in its production of NEWater.

Sewage is generated by residential, institutional, and commercial and industrial establishments. It includes household waste liquid from toilets, baths, showers, kitchens, sinks and so forth that is disposed of via sewers. In many areas, sewage also includes liquid waste from industry and commerce. The separation and draining of household waste into greywater and blackwater is becoming more common in the developed world, with greywater being permitted to be used for watering plants or recycled for flushing toilets.

Sewage may include stormwater runoff. Sewerage systems capable of handling stormwater are known as combined sewer systems. This design was common when urban sewerage systems were first developed, in the late 19th and early 20th centuries. Combined sewers require much larger and more expensive treatment facilities than sanitary sewers. Heavy volumes of storm runoff may overwhelm the sewage treatment system, causing a spill or overflow. Sanitary sewers are typically much smaller than combined sewers, and they are not designed to transport stormwater. Backups of raw sewage can occur if excessive infiltration/inflow (dilution by stormwater and/or groundwater) is allowed into a sanitary sewer system. Communities that have urbanized in the mid-20th century or later generally have built separate systems for sewage (sanitary sewers) and stormwater, because precipitation causes widely varying flows, reducing sewage treatment plant efficiency.

As rainfall travels over roofs and the ground, it may pick up various contaminants including soil particles and other sediment, heavy metals, organic compounds, animal waste, and oil and grease. Some jurisdictions require stormwater to receive some level of treatment before being discharged directly into waterways. Examples of treatment processes used for stormwater include retention basins, wetlands, buried vaults with various kinds of media filters, and vortex separators (to remove coarse solids) (Picture 1).

Sewage is generated by residential, institutional, and commercial and industrial establishments. It includes household waste liquid from toilets, baths, showers, kitchens, sinks and so forth that is disposed of via sewers. In many areas, sewage also includes liquid waste from industry and commerce. The separation and draining of household waste into greywater and blackwater is becoming more common in the developed world, with greywater being permitted to be used for watering plants or recycled for flushing toilets.

Classes of sewage include sanitary, commercial, industrial, agricultural and surface runoff. The wastewater from residences and institutions, carrying body wastes, washing water, food preparation wastes, laundry wastes, and other waste products of normal living, are classed as domestic or sanitary sewage.

Picture 1. Sewage treatment process

Sewage can be treated close to where it is created, a decentralised system (in septic tanks, biofilters or aerobic treatment systems), or be collected and transported by a network of pipes and pump stations to a municipal treatment plant, a centralised system (see sewerage and pipes and infrastructure). Sewage collection and treatment is typically subject to local, state and federal regulations and standards. Industrial sources of sewage often require specialized treatment processes (see Industrial wastewater treatment).

Sewage treatment generally involves three stages, called primary, secondary and tertiary treatment.

Primary treatment consists of temporarily holding the sewage in a quiescent basin where heavy solids can settle to the bottom while oil, grease and lighter solids float to the surface. The settled and floating materials are removed and the remaining liquid may be discharged or subjected to secondary treatment.

Secondary treatment removes dissolved and suspended biological matter. Secondary treatment is typically performed by indigenous, water-borne micro-organisms in a managed habitat. Secondary treatment may require a separation process to remove the micro-organisms from the treated water prior to discharge or tertiary treatment.

Tertiary treatment is sometimes defined as anything more than primary and secondary treatment in order to allow rejection into a highly sensitive or fragile ecosystem (estuaries, low-flow rivers, coral reefs,...). Treated water is sometimes disinfected chemically or physically (for example, by lagoons and microfiltration) prior to discharge into a stream, river, bay, lagoon or wetland, or it can be used for the irrigation of a golf course, green way or park. If it is sufficiently clean, it can also be used for groundwater recharge or agricultural purposes.

Control questions:

  1. What are Biosolids?
  2. What is the difference between biosolids and sludge?
  3. Why do we have biosolids?
  4. How are biosolids generated and processed?