Open Library - открытая библиотека учебной информации

Открытая библиотека для школьников и студентов. Лекции, конспекты и учебные материалы по всем научным направлениям.

Категории

Биология Ecosystem
просмотров - 342

Text 1

Read and translate the text.

Translate from Russian into English.

Make sure that you understand these verbs with prepositions and write sentences, incorporating them.

Give English equivalents to the following word combinations.

Working with word combinations and sentences

Лежащие в основе принципы, взаимодействовать напрямую, основываться на, абиотические составляющие, основные силы, поток энергии, циркулирование питательных веществ, основной источник, сложные органические соединœения, составить пищевую цепочку, последнее звено, расход энергии, голые скалы, поток лавы, относительно нестабильная экосистема, высокопродуктивная экосистема, многообразие видов.

To be based on, to contain within, to categorize into, to be capable of, to convert into, to build up, to feed on, to compose of, to make up, to account for, to store in, to incorporate into, to break down.

Экосистема или экологическая система - природный комплекс, образованный живыми организмами (биоценоз) и средой их обитания связанными между собой обменом веществ и энергии. Примеры Экосистем — пруд с обитающими в нём растениями, рыбами, беспозвоночными животными, микроорганизмами, донными отложениями, с характерными для него изменениями температуры, количества растворённого в воде кислорода, состава воды и т. п., с определённой биологической продуктивностью; лес с лесной подстилкой, почвой, микроорганизмами, с населяющими его птицами, травоядными и хищными млекопитающими, с характерным для него распределœением температуры и влажности воздуха, света͵ почвенных вод и др. факторов среды, с присущим ему обменом веществ и энергии. Гниющий пень в лесу, с живущими на нём и в нём организмами и условиями обитания, тоже можно рассматривать как Экосистему.

Working with texts

Ecosystem- the complex of living organisms, their physical environment, and all their interrelationships in a particular unit of space.

The principles underlying the study of ecosystems are based on the view that all the elements of a life-supporting environment of any size, whether natural or man-made, are parts of an integral network in which each element interacts directly or indirectly with all others and affects the function of the whole. All ecosystems are contained within the largest of them, the ecosphere, which encompasses the entire physical Earth (geosphere) and all of its biological components (biosphere).

An ecosystem can be categorized into its abiotic constituents, including minerals, climate, soil, water, sunlight, and all other nonliving elements, and its biotic constituents, consisting of all its living members. Linking these constituents together are two major forces: the flow of energy through the ecosystem, and the cycling of nutrients within the ecosystem.

The fundamental source of energy in almost all ecosystems is radiant energy from the sun. The energy of sunlight is used by the ecosystem's autotrophic, or self-sustaining, organisms. Consisting largely of green vegetation, these organisms are capable of photosynthesis—i.e., they can use the energy of sunlight to convert carbon dioxide and water into simple, energy-rich carbohydrates. The autotrophs use the energy stored within the simple carbohydrates to produce the more complex organic compounds, such as proteins, lipids, and starches, that maintain the organisms' life processes. The autotrophic segment of the ecosystem is commonly referred to as the producer level.

Organic matter generated by autotrophs directly or indirectly sustains heterotrophic organisms. Heterotrophs are the consumers of the ecosystem; they cannot make their own food. They use, rearrange, and ultimately decompose the complex organic materials built up by the autotrophs. All animals and fungi are heterotrophs, as are most bacteria and many other microorganisms.

Together, the autotrophs and heterotrophs form various trophic (feeding) levels in the ecosystem: the producer level, composed of those organisms that make their own food; the primary-consumer level, composed of those organisms that feed on producers; the secondary-consumer level, composed of those organisms that feed on primary consumers; and so on. The movement of organic matter and energy from the producer level through various consumer levels makes up a food chain. For example, a typical food chain in a grassland might be grass (producer) → mouse (primary consumer) → snake (secondary consumer) → hawk (tertiary consumer). Actually, in many cases the food chains of the ecosystem overlap and interconnect, forming what ecologists call a food web. The final link in all food chains is made up of decomposers, those heterotrophs that break down dead organisms and organic wastes.

A food chain in which the primary consumer feeds on living plants is called a grazing pathway; that in which the primary consumer feeds on dead plant matter is known as a detritus pathway. Both pathways are important in accounting for the energy budget of the ecosystem.

As energy moves through the ecosystem, much of it is lost at each trophic level. For example, only about 10 percent of the energy stored in grass is incorporated into the body of a mouse that eats the grass. The remaining 90 percent is stored in compounds that cannot be broken down by the mouse or is lost as heat during the mouse's metabolic processes. Energy losses of similar magnitude occur at every level of the food chain; consequently, few food chains extend beyond five members (from producer through decomposer), because the energy available at higher trophic levels is too small to support further consumers.

The flow of energy through the ecosystem drives the movement of nutrients within the ecosystem. Nutrients are chemical elements and compounds necessary to living organisms. Unlike energy, which is continuously lost from the ecosystem, nutrients are cycled through the ecosystem, oscillating between the biotic and abiotic components in what are called biogeochemical cycles. Major biogeochemical cycles include the water cycle, carbon cycle, oxygen cycle, nitrogen cycle, phosphorus cycle, sulfur cycle, and calcium cycle. Decomposers play a key role in many of these cycles, returning nutrients to the soil, water, or air, where they can again be used by the biotic constituents of the ecosystem.

The orderly replacement of one ecosystem by another is a process known as ecosystem development, or ecological succession. Succession occurs when a sterile area, such as barren rock or a lava flow, is first colonized by living things or when an existing ecosystem is disrupted, as when a forest is destroyed by a fire. The succession of ecosystems generally occurs in two phases. The early, or growth, phase is characterized by ecosystems that have few species and short food chains. These ecosystems are relatively unstable but highly productive, in the sense that they build up organic matter faster than they break it down. The ecosystems of the later, or mature, phase are more complex, more diversified, and more stable. The final, or climax, ecosystem is characterized by a great diversity of species, complex food webs, and high stability. The major energy flow has shifted from production to maintenance.


Читайте также


  • - The Structure of an Ecosystem

    PART II The Tundra Ecosystem VII. Read and translate the text. Tundra plants can be, classified into five main groups. Lichens are primitive plants without stems, leaves, or roots. They are a combination of algae and fungi that grow on rocks and the ground. A second group of plants are the mosses, which are usually found in cracks in rocks. Arctic cotton grass is a kind of grass, the third group of alpine plants, which produces a ball of white fluff that helps the plant stay... [читать подробенее]


  • - An Ecosystem

    IV. Answer the following questions about the reading. 1. What does ecology study? 2. What do the ecologists do? 3. What is ecosystem? 4. What components of the ecosystem do we call abiotic? 5. What examples of biotic components do you know? 6. What environmental problems is the world facing nowadays? 7. What do you know about these problems? 8. What are they caused by? 9. What ecological problems are there in your region? 10. How can they be solved? V. Make up a... [читать подробенее]


  • - Classification of ecosystem functions, goods and services

    Vocabulary environment – окружающая среда biodiversity – биоразнообразие awareness – осведомленность, информированность abundance – избыток, богатство nutrients – питательные вещества, биогенные вещества vegetation – растительная жизнь pedogenesis - почвообразовательный процесс Read the text and answer the... [читать подробенее]


  • - Ecosystem

    Text 1 Read and translate the text. Translate from Russian into English. Make sure that you understand these verbs with prepositions and write sentences, incorporating them. Give English equivalents to the following word combinations. Working with word combinations and sentencesЛежащие в основе принципы, взаимодействовать напрямую, основываться на, абиотические... [читать подробенее]